

Datasheet

Tianma

P0650VGF1MA00

TI-01-018

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

MODEL NO. :	P0650VGF1MA	<u>00</u>
Module version	Α	
VERSION :	Ver 1.0	
ISSUED DATE:	2021-02-20	\overline{V}
-	y Specification	
□Final Prod	uct Specificatio	n

Customer :	
Approved by	Notes

TIANMA Confirmed :

Prepared by	Checked by	Approved by
Gang.Li		

This technical specification is subjected to change without prior notice.

Table of Contents

Tab	le of Contents2
Red	cord of Revision
1	General Specifications4
2	Input/Output Terminals5
3	Absolute Maximum Ratings
4	Electrical Characteristics
5	Timing Chart10
6	Optical Characteristics
7	Environmental / Reliability Test
8	Mechanical Drawing
9	Packing drawing
10	QC flow chart
11	Outgoing inspection report
12	Precautions for Use of LCD Modules
13	Incoming Inspection Standard

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2021-02-20	Preliminary Specification Released.	Gang.Li
\frown			

1 General Specifications

	Feature	Spec	
	Size	6.5 inch	
	Resolution	640(RGB) x 480	
	Technology Type	a-Si TFT	
Display Spec.	Pixel Pitch (mm)	0.207 (H) x 0.207(V)	
Display Spec.	Pixel Configuration	R.G.B. Vertical Stripe	
	Display Mode	SFT, Normally black	
	Surface Treatment	AG	
	Viewing Direction	ALL	
	LCM (W x H x D) (mm)	154.00x 121.00 x 7.10	
	Active Area(mm)	132.48×99.36	
Mechanical Characteristics	With /Without TSP	Without Touch Screen	
Characteristics	Weight (g)	TBD	
	Matching Connection Type	CN1:FI-S20S CN2:SHLP-06V-S-B	
Electrical	Interface	Single LVDS	
Characteristics	Color Depth	16.7M	

Note 1: Requirements on Environmental Protection: Q/S0002

Note 2: LCM weight tolerance: +/- 5%

2 Input/Output Terminals

2.1 CN1(LCD)

Connector type:FI-SE20P-HFE (JAE) Matching connector: FI-S20S

PIN	Symbol	I/O	Description	Remark
1	VCC	Ρ	Power supply(+3.3V)	
2	VCC	Ρ	Power supply(+3.3V)	
3	GND	Ρ	Ground	
4	GND	Р	Ground	
5	Link 0-		- LVDS differential data input(R0~R5,G0)	•
6	Link 0+		+ LVDS differential data input(R0~R5,G0)	
7	GND	Р	Ground	
8	Link 1-		 LVDS differential data input(G1~G5,B0~B1) 	
9	Link 1+	Ι	+ LVDS differential data input(G1~G5,B0~B1)	
10	GND	Р	Ground	
11	Link 2-	Ι	- LVDS differential data input (B2~B5,-,-,DE)	
12	Link 2+		+ LVDS differential data input (B2~B5,-,-,DE)	
13	GND	Р	Ground	
14	CLKIN-		- LVDS differential data input	
15	CLKIN+	_	+ LVDS differential data input	
16	GND	Ρ	Ground	
17	Link 3-		 LVDS differential data input(R6~R7,G6~G7,B6~B7) 	
18	Link 3+		+ LVDS differential data input(R6~R7,G6~G7,B6~B7)	
19	Mode	I	L: 6bit H: 8bit	
20	SC		Display direction selection	

I---Input, O---Output, P--- Power/Ground

Table 2.1 terminal pin assignments

Note 1: Scan direction is shown as below(PCB at down side):

2.2 CN2(Backlight)

Connector type: JST SM06B-SHLS-TF(LF)(SN) Matching connector:SHLP-06V-S-B

No	Symbol	I/O	Description	Remark
1	NC	-	No connection	
2	NC	-	No connection	
3	LED C1	Р	LED cathode 1	
4	LED A1	Р	LED anode 1	
5	LED A2	Р	LED anode 2	
6	LED C2	Р	LED cathode 2	

Table2.2 Backlight pin assignment

3 Absolute Maximum Ratings

					Ta = 25℃	
Item	Symbol	Min	Max	Unit	Remark	
Power Voltage for LCD	VCC	-0.5	5.0	V	Note1	
Input voltage for LCD	Vin	-0.5	5.0	V	Noter	
Operating Temperature	TOPR	-30	+80	°C	Note2	
Storage Temperature	TSTG	-40	+90	°C	NOLEZ	
	RH			≪95	%	Ta ≪40℃
Deletive I kunsislitu			≪85	%	40° C <i><</i> Ta ≤ 50° C	
Relative Humidity Note2			≤55	%	50° C <i><</i> Ta ≤60°C	
NOICEZ			≤36	%	60° C <i><</i> Ta ≤ 70° C	
			≪24	%	70° C <i><</i> Ta≤80°C	
Absolute Humidity	AH		≪70	g/m³	Ta>70℃	

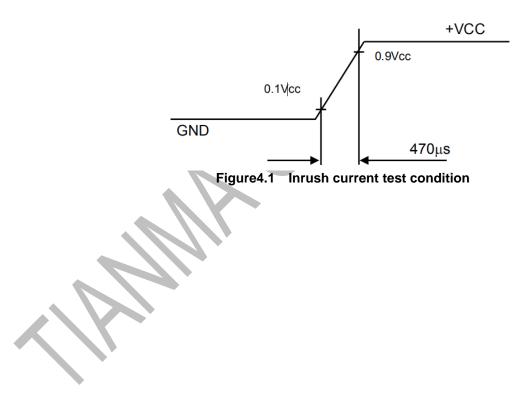
Table 3.1 absolute maximum rating

Note1: V_{IN} represents Mode,SC,LVDS data etc..

Note2: Ta means the ambient temperature.

It is necessary to limit the relative humidity to the specified temperature range. Condensation on the module is not allowed.

4 Electrical Characteristics


4.1 Recommended Operating Condition

VCC=3.3V, GND=0V, Ta = 25%							
I	tem	Symbol	MIN	TYP	MAX	Unit	Remark
Power supply	Voltage	VCC	3.00	3.30	3.60	V	
Power supply	ripple	Vp-p	-	-	100	mV	
Power supply current		IDD	-	TBD	-	mA	
Power consumption		Р	-	TBD	-	mW	Note1
Input voltage threshold	Low level	VIL	0	I	0.3VCC	V	
	High level	VIH	0.7VCC	-	VCC	V	
Inrush current		Irush	-	-	1.5	А	Note2

Table 4.1 LCD module electrical characteristics

Note1: To test the current dissipation, using the "white "testing pattern.

Vcc rising time is 470µs

2E 00

4.2 Backlight Unit Driving Condition

						Ta = 25 C
Item	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	I _F	-	180	200	mA	
Forward Current Voltage	V _F	-	18.6	20.4	V	12 LEDs (6 LED Serial,
Backlight Power Consumption	W _{BL}	-	3348	-	mW	2 LED Parallel)
Operating Life Time		-	100000	-	hrs	Note

Table 4.2 Backlight Unit Driving Condition

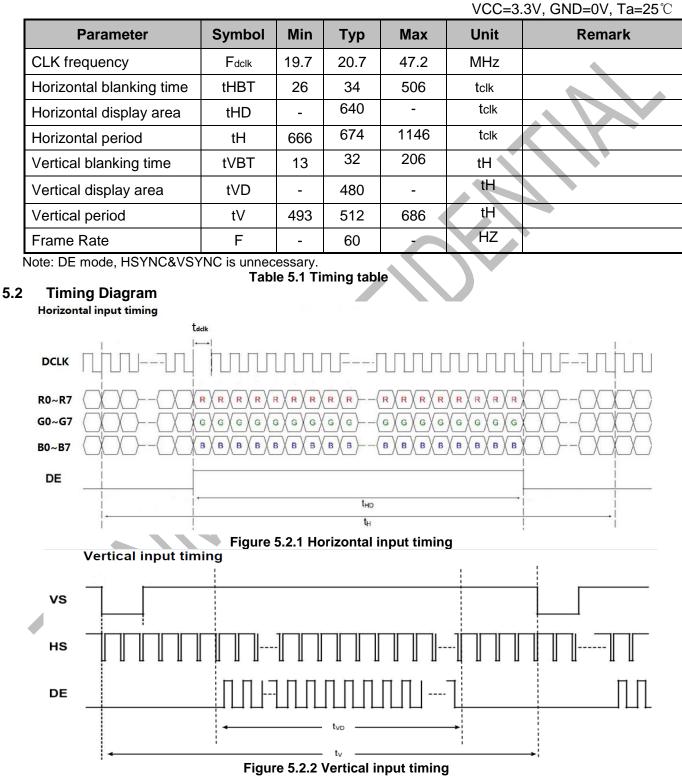
Note1: The LED driving condition is defined for total LED module.

Note2: Under LCM operating, the stable forward current should be inputted. And forward voltage is for reference only.

Note3: Optical performance should be evaluated at $Ta=25^{\circ}C$ only If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

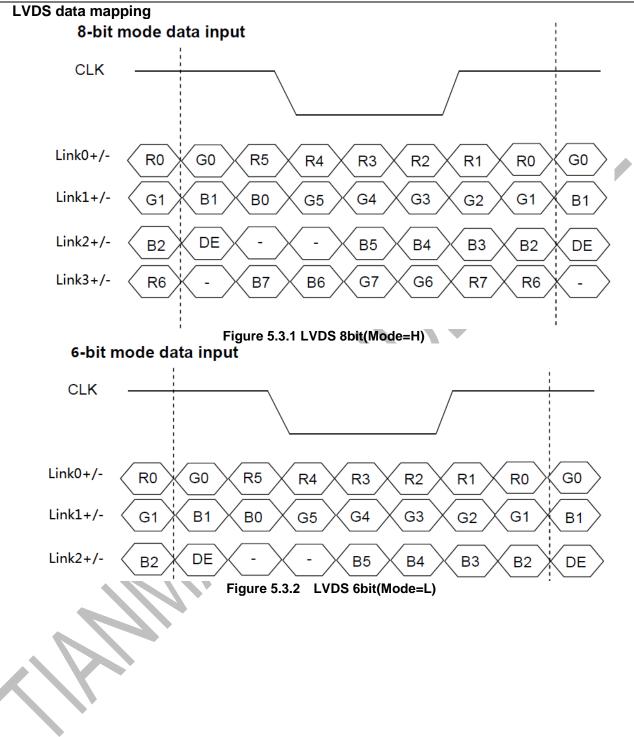
Note4: The LED driving condition is defined for each LED module.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.



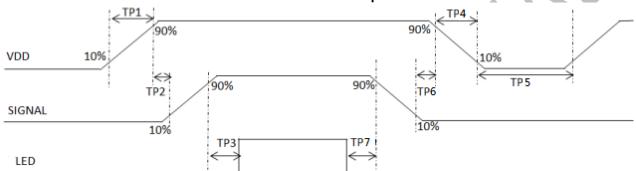
4.3 BLOCK DIAGRAM 6.5 " <u>u</u> 640RGB*480 Gate LED Light bar Source IC FPC PCB CN1 CN2 Figure4.3 Block diagram

5 Timing Chart


5.1 Input Timing

Note: HS/VS waveform is for reference only.


5.3



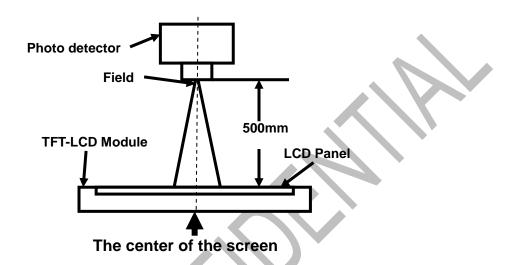
5.4 POWER ON/OFF SEQUENCE

Item	Symbol	Min	Тур	Max	Unit	Remark
VCC on to VCC stable	TP1	0.5	-	3	ms	
VCC stable to signal on	TP2	1	-	-	ms	
Signal on to LED on	TP3	200	-	-	ms	
VDD off time	TP4	0	-	10	ms	
VDD off to next VDD on	TP5	500	-	-	ms	
Signal off before VDD off	TP6	1	-	-	ms	
LED off before signal off	TP7	200	-	-	ms 🍙	

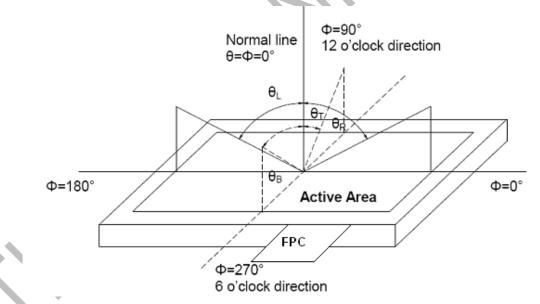
Figure 5.4 Power on/off sequence

6 Optical Characteristics

Item		Symbol	Condition	Min	Тур	Max	Unit	Remark
View Angles		θΤ	CR≧10	75	85	-	Degree	
		θΒ		75	85	-		Note 2
		θL		75	85	-		Note 2
		θR		75	85	-		
Contrast Ratio		CR	θ=0°	700	900	-		Note1 Note3
Response Time		T _{ON}	25 ℃	-	30		ms	
		T _{OFF}				35		Note1 Note4
	White	x	Backlight is on	0.263	0.313	0.363		
Chromaticity		у		0.279	0.329	0.379		
	Red	х		-		-		
		у				-		Note1
	Green	x			-	-		Note5
		у		-	-	-		
	Blue	x			-	-		
		у		-	-	-		
Uniformity		U		75	80	-	%	Note1 Note6
NTSC				65	70	-	%	Note 5
Luminance (Without TP)		L		900	1200	-	cd/m ²	Note1 Note7


Test Conditions:

- 1. I_F = 180 mA, and the ambient temperature is 25±2°C.humidity is 65±7%
- 2. The test systems refer to Note 1 and Note 2.


Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

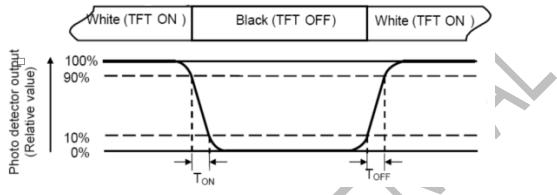
viewing angle is measured at the center point of the LCD by CONOSCOPE(ergo-80).

Note 3: Definition of contrast ratio

 $Contrast ratio (CR) = \frac{Luminance measured when LCD is on the "White" state}{Luminance measured when LCD is on the "Black" state}$

"White state ": The state is that the LCD should drive by Vwhite.

"Black state": The state is that the LCD should drive by Vblack.

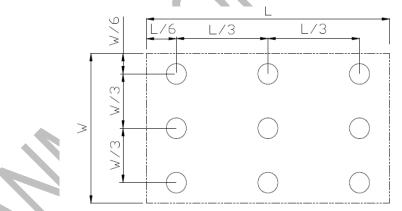

Vwhite: To be determined Vblack: To be determined.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 90% to 10%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 10% to 90%.

Note 5: Definition of color chromaticity (CIE1931)


Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/ Lmax

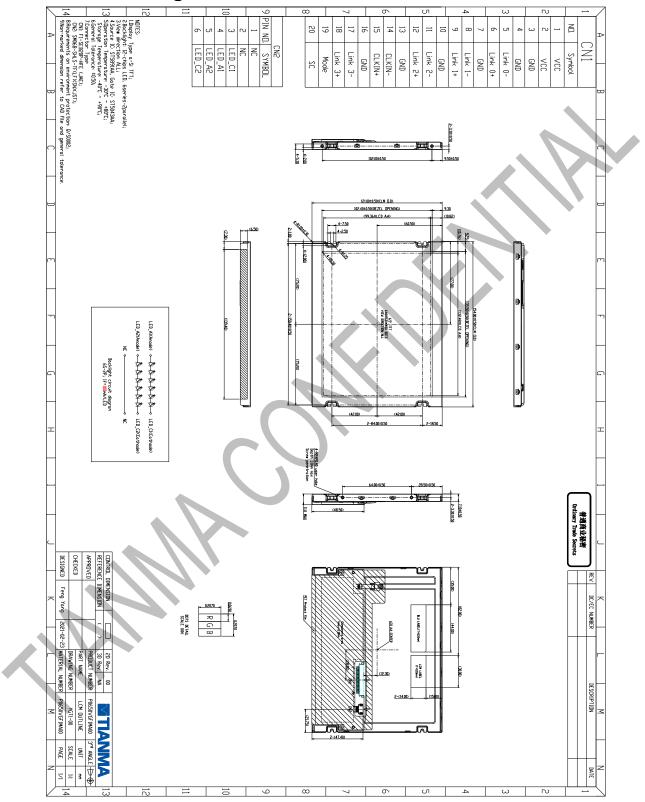
L-----Active area length W----- Active area width

Lmax: The measured Maximum luminance of all measurement position.

Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.


7 Environmental / Reliability Test

		,									
No	Test Item	Condition	Remarks								
1	High Temperature Operation	Ta = +80℃, 500 hours	IEC60068-2-1 GB2423.2								
2	Low Temperature Operation	Ta = -30℃, 500 hours	IEC60068-2-1 GB2423.1								
3	High Temperature Storage	Ta = +90℃, 500 hours	IEC60068-2-1 GB2423.2								
4	Low Temperature Storage	Ta = -40℃, 500 hours	IEC60068-2-1 GB2423.1								
5	High Temperature and Humidity Operation	Ta = +60℃, 90% RH max,500hours	IEC60068-2-78 GB/T2423.3								
6	Thermal Shock (non-operation)	-30℃ 30 min~+80℃ 30 min, Change time:5min, 100 Cycle	Start with cold temperature, End with high temperature, IEC60068-2-14,GB2423.22								
7	ESD	C=150pF,R=330Ω,5point/panel Air:±15Kv,5times; Contact:±8Kv,5times (Environment:15°C~35°C, 30%~60%.86Kpa~106Kpa)	IEC61000-4-2 GB/T17626.2								
8	Vibration Test (non-operation)	vibration level :9.8m/s2(1G) waveform: sinusoidal Frequency range: 5 to 500Hz Frequency sweep rate:0.5 octave/min Duration : one sweep from 5 to 500Hz in each of three mutually perpendicular axis(each x,y,z axis: 1hour, total 3 hours)	GB/T 2423.10-2008 ; GB/T 2423.56-2006								
9	Shock Test	Shock level:1470m/s ² (150G) Waveform:half sinusodial wave,2ms Number of shocks: one shock input in each direction of three mutually perpendicular axies for a total of six shock inputs	GB/T 2423.5-1995								
10	Package Drop Test	Height:60cm, 1corner,3edges,6surfaces	GB/T 4857.5-1992								
11	Package Vibration	Frequency : 5-20-200HZ [,] PSD : 0.01-0.01-0.001 Total:0.781g2/HZ,x/y/z axis per 30min)	GB/T 4857.23-2012								

Note1: Ta is the ambient temperature of samples.

8 Mechanical Drawing

9 Packing drawing

No	Item	Model (Material)	Dimensions(mm)	Unit Weight(Kg)	Quantity	Remark
1	LCM	P0650VGF1MA00	154.00x 121.00 x 7.10	TBD	TBD	
2						
3						
4						
5						
6						
7	Total weight		TBD \pm 5% Kg			

10 Precautions for Use of LCD Modules

10.1 Handling Precautions

11.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.

11.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

11.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

11.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

11.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

Isopropyl alcohol

- Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water ,Ketone ,Aromatic solvents

11.1.6 Do not attempt to disassemble the LCD Module.

11.1.7 If the logic circuit power is off, do not apply the input signals.

11.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

11.1.8.1 Be sure to ground the body when handling the LCD Modules.

11.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.

11.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.

11.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage precautions

11.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

11.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: $\leq 80\%$

11.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

10.3 Transportation Precautions

11.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

FORTEC Elektronik AG Augsburger Str. 2b 82110 Germering

Phone: E-Mail: Internet: +49 89 894450-0 info@fortecag.de www.fortecag.de

Fortec Group Members

Germany

DISTEC

A FORTEC GROUP MEMBER

United Kingdom

Distec GmbH Office Vienna Nuschinggasse 12 1230 Wien

Phone: E-Mail: Internet: +43 1 8673492-0 info@distec.de www.distec.de

Distec GmbH Augsburger Str. 2b 82110 Germering

Phone: E-Mail: Internet: +49 89 894363-0 info@distec.de www.distec.de

ALTRAC AG Bahnhofstraße 3 5436 Würenlos

Phone: E-Mail: Internet:

Phone:

E-Mail: Internet: +41 44 7446111 info@altrac.ch www.altrac.ch

Display Technology Ltd. Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

> +44 1480 411600 info@displaytechnology.co.uk www. displaytechnology.co.uk

Apollo Display Technologies, Corp. 87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: E-Mail: Internet: +1 631 5804360 info@apollodisplays.com www.apollodisplays.com