

Datasheet

InnoLux

G154I1-LE1 Rev.C3

CH-01-033R1.2

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

- □ Tentative Specification
- □ Preliminary Specification
- Approval Specification

MODEL NO.: G154I1 SUFFIX: LE1

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for signature and comments.	your confirmation with your

Approved By	Checked By	Prepared By
陳立錚	林秋森	阮志昌

Version 2.5 1/32

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 5
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	 8
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE	 11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 SCANNING DIRECTION 5.3COLOR DATA INPUT ASSIGNMENT 5.3.1 For 6-Bits 5.3.2 For 8-Bits	 12
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE 6.3 THE INPUT DATA FORMAT	 18
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 23
8. Reliability Test Criteria9. PACKAGING9.1 PACKING SPECIFICATIONS9.2 PACKING METHOD	 27 28
10. DEFINITION OF LABELS 10.1 MODULE LABEL 10.2 CARTON LABEL	 30
11. PRECAUTIONS 11.1 ASSEMBLY AND HANDLING PRECAUTIONS 11.2 SAFETY PRECAUTIONS	 31
12. MECHANICAL CHARACTERISTICS	 32

REVISION HISTORY

Version	Date	Section	Description
Ver 2.0	18th, Mar., 2011	All	G154I1-LE1 Approval specification was first issued.
Ver 2.1	12th, Aug., 2011	3.2	Backlight Unit – Added Note (4) Modified PWM Control Duty (Min 20% → 2%)
			Modified PWM Control Frequency (Max 210→20KHz)
Ver 2.2	28th, Nov., 2011	12	Mechanical Drawing Note(2) Correction to I/F connector part number Note(3) Correction to LED connector part number
Ver 2.3	12th, Dec., 2011	5.3	Add 8bit Data Format
Ver 2.4	28th, Nov., 2016	1.4 3.2 10.1	Power Consumption Total 11.4W(Max.) BL7.4W (Max.) LED Current 60mA LED Converter Power Consumption 6.2W (Typ.) Module label Company logo from CHI MEI OPTOELECTRONICS to INNOLUX
Ver 2.5	04th, Oct., 2019	ALL 4 8 10 12 15 18 19 20	Product version from C2 to C3. Power Consumption form 11.4W(Max.) to 10.1W(Max.) 3.1 TFT LCD MODULE: Power Supply Current: White: 450(Typ) \(550(Max) \) / Black: 680(Typ) \(820(Max) \) Modify 3.2 BACKLIGHT UNIT table 5.1 TFT LCD MODULE: Pin30 from GND to BIST and Add note(3) Modify 5.2 SCANNING DIRECTION to INX. Modify input signal timing specifications table Add TIMING DIAGRAM of LVDS figure Modify power on/off sequence diagram and Add note(4~7)
Version 2	_		3/32

Version 2.5 3/32

INNOLUX 群創光電

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

The G154I1-LE1 model is a 15.4" TFT-LCD module with a white LED Backlight Unit and a 30-pin 1ch-LVDS interface. This module supports 1280 x 800 WXGA mode and displays 262k/16.2M colors. The converter for the Backlight Unit is built in.

1.2 FEATURES

- WXGA (1280 x 800 pixels) resolution
- Wide operating temperature
- DE (Data Enable) mode
- LVDS (Low Voltage Differential Signaling) interface
- RoHS Compliance
- LED Light Bar Replaceable
- Reverse Scan

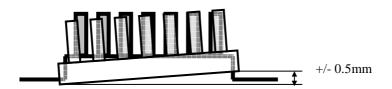
1.3 APPLICATION

- TFT LCD Monitor
- Industrial Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Diagonal Size	15.4	inch	
Active Area	331.2(H) x 207.0(V)	mm	(1)
Bezel Opening Area	334.5 x 210.3	mm	
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 800	pixel	-
Pixel Pitch	0.259(H) x 0.259(V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262k/ 16.2M	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	AG, 3H	-	-
Luminance, White	400	Cd/m2	
Power Consumption	Total10.1W(Max.) @ cell 2.7W (Max.),BL7.4W (Max.)		

Version 2.5 4/32



1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note	
	Horizontal (H)	351.5	352	352.5	mm		
Module Size	Vertical (V)	229.5	230	230.5	mm	(1)	
	Thickness (T)	8.5	9	9.5	mm		
Bezel Area	Horizontal	334.2	334.5	334.8	mm		
Dezei Alea	Vertical	210.0	210.3	210.6	mm		
Weight		-	880	-	g		
		The mounting in					
I/F connector mounting position		the screen		(2)			
			horizontal.				

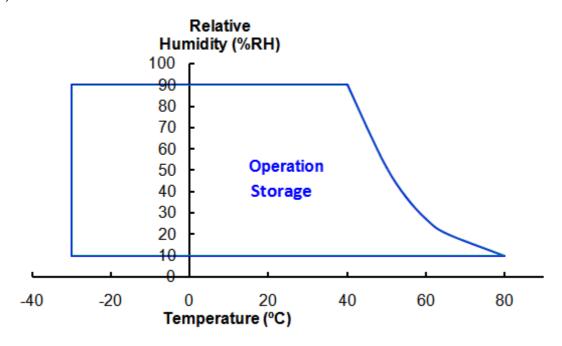
Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) Connector mounting position

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

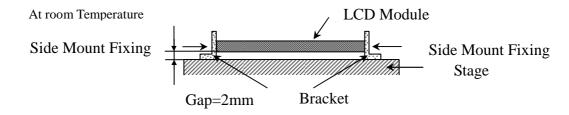
Itom	Cymbol	Va	lue	Lloit	Note	
Item	Symbol	Min.	Max.	Unit	Note	
Operating Ambient Temperature	T _{OP}	-30	+80	°C	(1), (2)	
Storage Temperature	T _{ST}	-30	+80	ô	(1)	


Note (1): Temperature and relative humidity range is shown in the figure below.

- (a) 90 %RH Max. (Ta < 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max. (Ta < 40 °C).
- (c) No condensation.

Version 2.5 5/32

Note (2)



Note (3) 1 time for $\pm X$, $\pm Y$, $\pm Z$. for Condition (25G / 6ms) is half Sine Wave,.

Note (4) 5- 9Hz: 3,5mm amplitude 9- 500Hz: 1g- each 10 cycles / axis (X,Y,Z); 1 octave / min.

Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Itam	Cumbal	Value		Lloit	Note
Item	Symbol	Min.	Max.	Unit	Note
Power Supply Voltage	Vcc	-0.3	4.0	V	(1)
Logic Input Voltage	V _{IN}	-0.3	Vcc+0.3	V	(1)

Version 2.5 6/32

2.2.2 BACKLIGHT UNIT

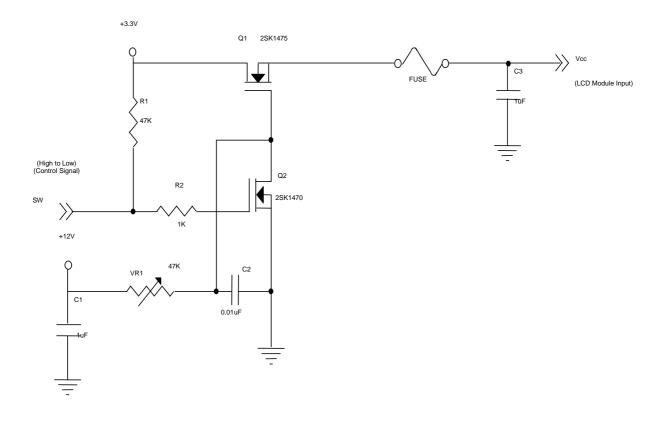
Itom		Value	Unit	Noto		
Item	Min	Тур.	Max.	Ullit	Note	
LED Light Bar Input voltage	-	28	-	V_{DC}	(4) (0)	
LED Light Bar Input Current	-	320	-	mA_DC	(1), (2)	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to Section 3.2 for further information).

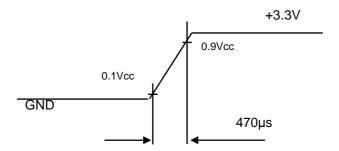
Version 2.5 7/32

3. ELECTRICAL CHARACTERISTICS

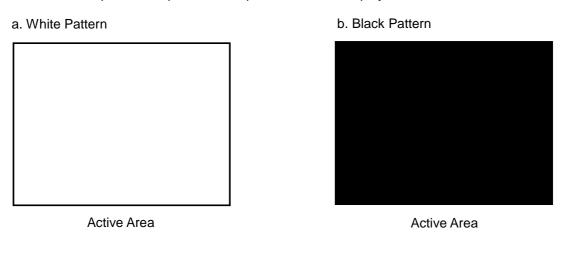

3.1 TFT LCD MODULE

Ta = 25 ± 2 ℃

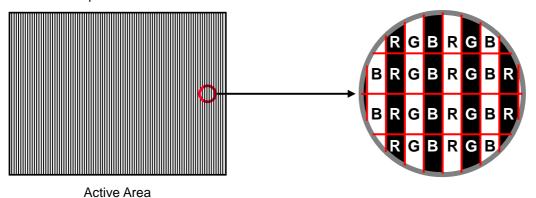
Paramete	Parameter			Value		Unit	Note
Taramete	7 1	Symbol	Min.	Тур.	Max.	Offic	11010
Power Supply Voltage		Vcc	3.0	3.3	3.6	V	at Vcc=3.3V
Ripple Voltage		V_{RP}	-	50		mV	-
Rush Current		I _{RUSH}	ı		1.5	Α	(2)
Initial Stage Current		I _{IS}	ı	•	1.0	Α	(2)
Davis a Committee Comment	White	- Icc	-	450	550	mA	(3)a, at Vcc=3.3V
Power Supply Current	Black		-	680	820	mA	(3)b, at Vcc=3.3V
LVDS Differential Input F	ligh Threshold	VTH(LVDS)	-	-	+100	mV	VCM=1.2V
LVDS Differential Input Low Threshold		VTL(LVDS)	-100	-	-	mV	VCM=1.2V
LVDS Common Mode Voltage		VCM	1.125	ı	1.375	٧	
LVDS Differential Input Voltage		VID	100	1	600	mV	
Terminating Resistor		RT	-	100	-	Ohm	


Note (1) The assembly should be always operated within above ranges.

Note (2) Measurement Conditions:



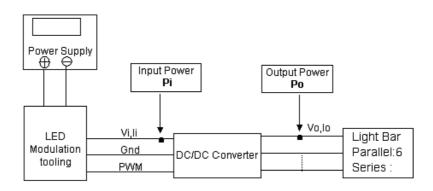
Version 2.5 **8/32**


VCC rising time is 470us

Note (3) The specified power supply current is under the conditions at Vcc = 3.3 V, Ta = 25 ± 2 °C, $f_v = 60$ Hz, whereas a power dissipation check pattern below is displayed.

c. Vertical Stripe Pattern

Version 2.5 9/32


3.2 BACKLIGHT UNIT Ta = 25 ± 2 °C

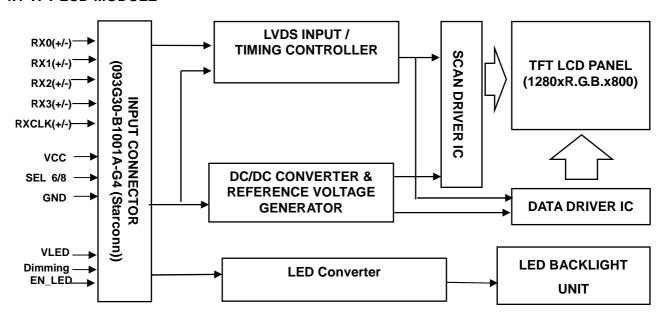
Parameter		Symbol		Value		Unit	Note	
Parameter		Symbol	Min.	Тур.	Max.	Offic	Note	
Converter Power Supply Voltage		Vi	10.8	12.0	13.2	V	(Duty 100%)	
Converter Input Ripple volt	age	Vi _{RP}	-	-	500	mV	(Duty 100%)	
Converter Power Supply C	urrent	I _i	420	520	620	mA	@ Vi = 12V (Duty 100%)	
Converter Inrush Current		liкusн	-	-	3.0	А	@ Vi rising time=10ms (Vi=+12.0V)	
LED Power Consumption		P _{LED}	5.0	6.2	7.4	W	@ Vi = 12V (Duty 100%),(3)	
EN Control Level	Backlight on	BLU_EN	2.0	3.3	5.0	V		
EN Control Level	Backlight off	BLU_EN	0		0.3	V		
PWM Control Level	PWM High Level	BLU_ADJ	2.0	3.3	5.0	V		
1 VVIVI GONGOI ECVEI	PWM Low Level	DLO_ADO	0		0.15	V		
PWM Control Duty Ratio			2		100	%	@200Hz,Suggestion (4),@ 190Hz≦f _{PWM} <1kHz	
			40		100	%	(4), @ 1kHz≦f _{PWM} ≦20kHz	
PWM Control Frequency		f_{PWM}	190	200	20K	Hz	(4)	
PWM Noise Range		VNoise	-	-	0.1	V		
LED Input Voltage		Vf		2.9		VDC	If= 60 mA/EA	
LED Current		lf		60		mΑ	Per EA	
LED Life Time		L _L	50,000			Hrs	(1)	

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 \pm 2 $^{\circ}$ C and ILED = 60mADC(LED forward current) until the brightness becomes \leq 50% of its original value. Operating LED under high temperature environment will reduce life time and lead to color shift

Note (3) $P_L = I_o \times V_o$

Note (4) At 190 ~1KHz PWM control frequency, duty ratio range is restricted from 2% to 100%.


When 1K ~20KHz PWM control frequency $\dot{}$ minimum duty on-time \geq 20 us. If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than 1KHz.

Version 2.5 10/32

4. BLOCK DIAGRAM

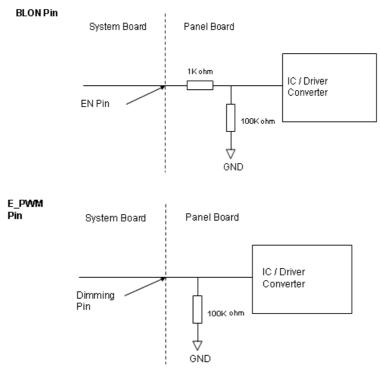
4.1 TFT LCD MODULE

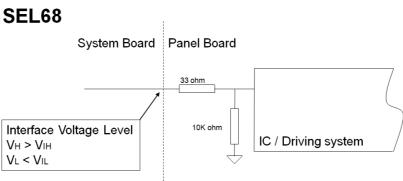
Version 2.5 11/32

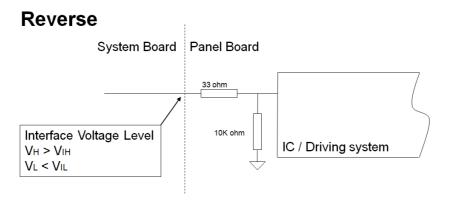
5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

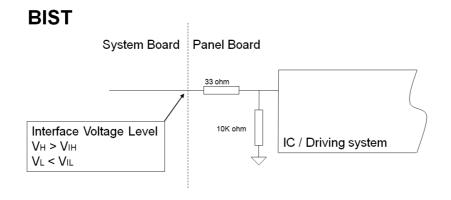
Pin	Name	Description	Remark
1	12V	LED Power supply	LED converter power
2	12V	LED Power supply	
3	12V	LED Power supply	
4	12V	LED Power supply	
5	ENLED	Enable Pin	(3)
6	Dimming	Backlight Adjust	(3)
7	GND	Ground	
8	GND	Ground	
9	VCC	Power supply +3.3V	System power
10	VCC	Power supply +3.3V	
11	GND	Ground	
12	GND	Ground	
13	RX0-	Differential Data Input, CH0 (Negative)	
14	RX0+	Differential Data Input, CH0 (Positive)	
15	GND	Ground	
16	RX1-	Differential Data Input, CH1 (Negative)	
17	RX1+	Differential Data Input, CH1 (Positive)	
18	GND	Ground	
19	RX2-	Differential Data Input, CH2 (Negative)	
20	RX2+	Differential Data Input, CH2 (Positive)	
21	GND	Ground	
22	RXCLK-	Differential Clock Input (Negative)	
23	RXCLK+	Differential Clock Input (Positive)	
24	GND	Ground	
25	RX3-	Differential Data Input, CH3 (Negative)	
26	RX3+	Differential Data Input, CH3 (Positive)	
27	GND	Ground	
28	SEL6/8	LVDS 6/8 bit select function control, Low or NC → 6 bit Input Mode High →8 bit Input Mode	(2),(3)
29	Reverse	Scanning direction control Low or NC → normal display (default) High → display with 180 degree rotation	(2),(3)
30	BIST	BIST mode Low or NC → normal display (default) High → BIST mode	(2),(3)


Note (1) Connector Part No.: STARCONN 093G30-B1001A-G4 or equivalent.


Note (2) "Low" stands for 0V. "High" stands for 3.3V. "NC" stands for "No Connected".


Note (3) ENLED(BLON), Dimming(E_PWM), SEL6/8, Reverse, BIST as shown below:

Version 2.5 12/32



Version 2.5 13/32

INNOLUX 群創光電

PRODUCT SPECIFICATION

Version 2.5 14/32

5.2 SCANNING DIRECTION

The following figures are seen from a front view and the arrow shows the direction of scan.

Fig.1 Normal Scan

(PCBA on the top side)

Fig.2 Reverse Scan

(PCBA on the top side)

5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6/8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

5.3.1 For 6-Bits

	Data Signal																		
Color				Re					Green					Blue					
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	0	0	0	0	0	0	0	0	0	0	0	0
Of	:	:	:	:	:	:	:	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	0	0	0	0	0	0	:	:	:	:	:	:	0	0	0	0	0	0
Of	:	0	0	0	0	0	0	:	:	:	:	:	:	0	0	0	0	0	0
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	0	0	0	0	0	0	0	0	0	0	0	0	:	:	:	:	:	:
Of	:	0	0	0	0	0	0	0	0	0	0	0	0	:	:	:	:	:	:
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Version 2.5 16/32

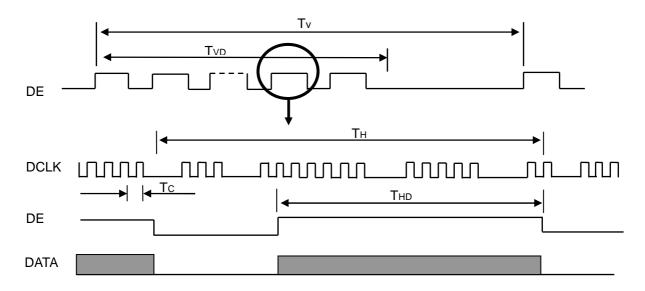
5.3.2 For 8-Bits

											D	ata S	ignal												
	Color				Re	-							Gre	een								lue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	В6	B5	B4	ВЗ	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Of	:	:	:	:	:	:	:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red(253)	1	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	0	0	0	0	0	0	0	0	:	:	:	:	:	:	:	:	0	0	0	0	0	0	0	0
Of		0	0	0	0	0	0	0	0	:	:	:	:	:	:	:	:	0	0	0	0	0	0	0	0
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	0	0	0	:	0	0	0	0	0	0	0	0	0	0	0	0	:	:	:	:	:	:	:	:
Of	<u> </u>	0	0	0	:	0	0	0	0	0	0	0	0	0	0	0	0	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Version 2.5 17/32

6. INTERFACE TIMING

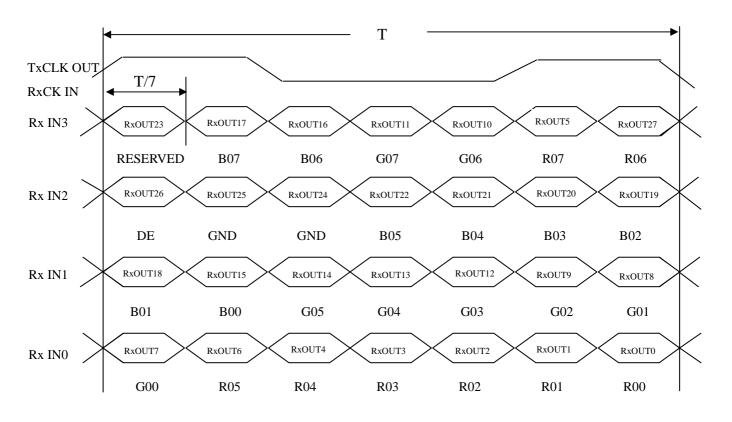
6.1 INPUT SIGNAL TIMING SPECIFICATIONS


The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
LVDS Clock	Frequency	Fc	67.45	71.1	74.55	MHz	
LVD3 Clock	Period	Tc	13.41	14.08	14.82	ns	
	Frame Rate	Fr	1	60	-	Hz	
Vertical Display	Total	Tv	810	823	1000	Th	Tv=Tvd+Tvb
Term	Active Display	Tvd	800	800	800	Th	-
	Blank	Tvb	10	23	200	Th	-
	Total	Th	1360	1440	1600	Тс	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	1280	1280	1280	Тс	-
	Blank	Thb	80	160	320	Tc	-

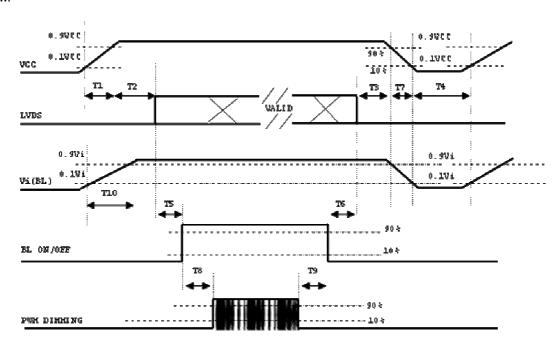
Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.


INPUT SIGNAL TIMING DIAGRAM

Version 2.5 18/32

TIMING DIAGRAM of LVDS



Version 2.4 19/32

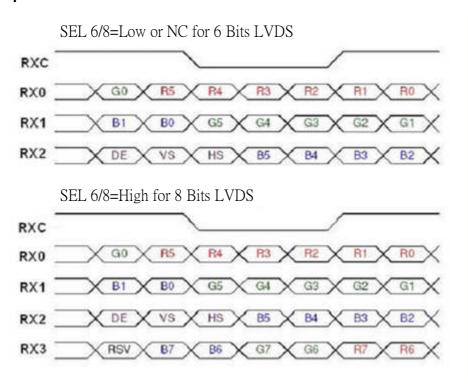
6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Power ON/OFF sequence

Darameter		Units		
Parameter	Min	Тур	Max	Offics
T1	0.5	1	10	ms
T2	0	1	50	ms
Т3	0	1	50	ms
T4	500	ı	ı	ms
T5	450	ı	ı	ms
T6	200	1	1	ms
T7	10	ı	100	ms
Т8	10	ı	ı	ms
Т9	10	-	-	ms
T10	20	-	50	ms

Note


- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.

Version 2.4 20/32

- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec".

6.3 The Input Data Format

Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

Version 2.4 21/32

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-		
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

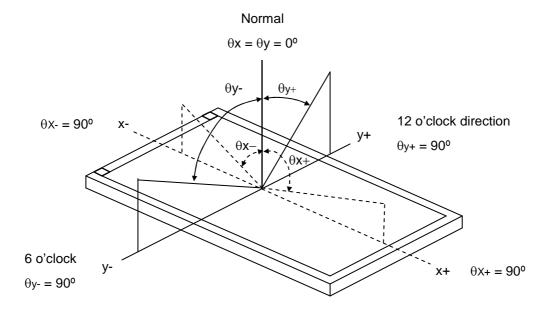
Version 2.4 22/32

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Value	Unit					
Ambient Temperature (Ta)	25±2	$^{\circ}\! \mathbb{C}$					
Ambient Humidity (Ha)	50±10	%RH					
Supply Voltage	•						
Input Signal	According to typical value in "ELECTRICAL CHARACTERISTICS"						
LED Light Bar Input Current Per Input Pin							

7.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 7.2 and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (5).

Iten	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note		
Contrast Ratio)	CR		500	700	-	-	(2), (5)		
Danasa Tima		T_R		-	5	10	ms			
Response Tin	ne	T _F		-	11	16	ms	(3)		
Luminance of	White	L _c		350	450	-	cd/m ²	(4), (5)		
White Variation	n	δW		-	1.25	1.4	-	(5), (6)		
	Dod	Rx	$\theta_x = 0^\circ, \theta_Y = 0^\circ$		0.601		-			
	Red	Ry	Viewing Normal		0.340	Typ. +0.05	-	(1), (5)		
	Green	Gx	Angle		0.332		-			
Color		Gy	Aligic	Тур.	0.583		-			
Chromaticity	Blue	Bx		+0.05	0.149		•			
		Ву			0.087		•			
	White	Wx			0.313		-			
	vvriite	Wy			0.329		-			
	l lovimontol	θ_x +		70	80	-				
Viewing Angle	Horizontal	θ_{x} -		70	80	-	Dan	(4) (5)		
	Marthael	θ _Y +	CR≥10	60	70	-	Deg.	(1), (5)		
	Vertical	θ _Y -		60	70	-				

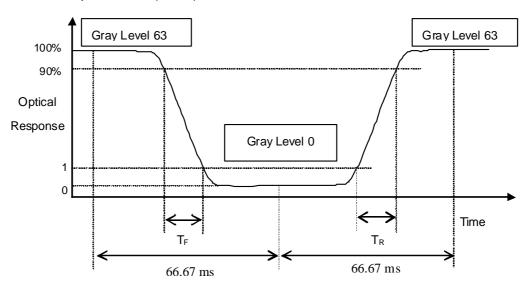
Version 2.4 23/32

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0


L63: Luminance of gray level 63

L 0: Luminance of gray level 0

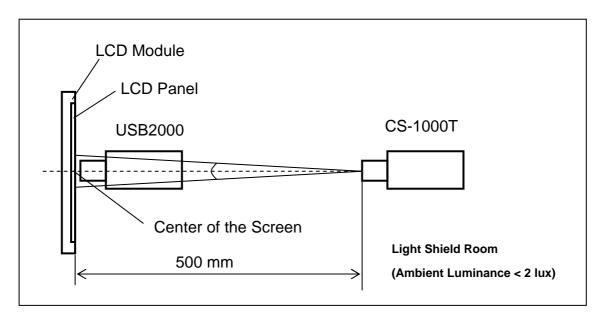
CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) and measurement method:

Version 2.4 24/32

Note (4) Definition of Luminance of White (L_C):

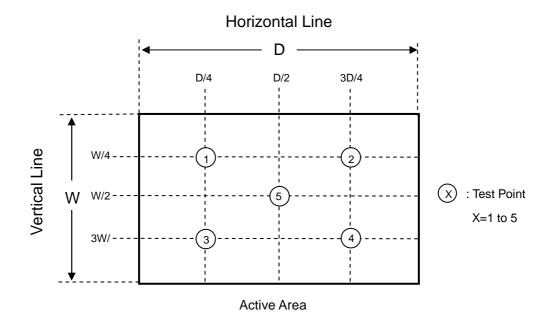

Measure the luminance of gray level 63 at center point

$$L_{\rm C} = L (5)$$

L(x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.


Version 2.4 25/32

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 5 points

$$\delta W = \frac{\text{Maximum [L (1), L (2), L (3), L (4), L (5)]}}{\text{Minimum [L (1), L (2), L (3), L (4), L (5)]}}$$

Version 2.4 26/32

8. Reliability Test Criteria

Test Item	Test Condition	Note	
High Temperature Storage Test	80°C,240 hours		
Low Temperature Storage Test	-30°C, 240hours		
Thermal Shock Storage Test	-30°C, 0.5hour←→80°C, 0.5hour; 1hour/cycle,100cycles		
High Temperature Operation Test	80°C, 240 hours	(1)(2)(4)	
Low Temperature Operation Test	-30°C, 240 hours		
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours		
Shock (Non-Operating)	50G, 11ms, half sine wave, 1time for each direction of ±X, ±Y, ±Z	(3)(4)	
Vibration (Non-Operating)	1.5G 10~300hz sine wave, 10min/cycle, 3cycles, each X, Y, Z direction	(3)(4)	

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 80 °C Max.
- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.

Version 2.4 27/32

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 13pcs LCD modules / 1 Box
- (2) Box dimensions: 465(L) X 362 (W) X 314 (H) mm
- (3) Weight: approximately 11 Kg (13 modules per box)

9.2 PACKING METHOD

(1) Carton Packing should have no failure in the following reliability test items.

Test Item	Test Conditions	Note
	ISTA STANDARD	
	Random, Frequency Range: 2 – 200 Hz	
Vibration	Top & Bottom: 30 minutes (+Z), 10 min (-Z),	Non Operation
	Right & Left: 10 minutes (X)	
	Back & Forth 10 minutes (Y)	
Dropping Test	1 Angle, 3 Edge, 6 Face, 61 cm	Non Operation

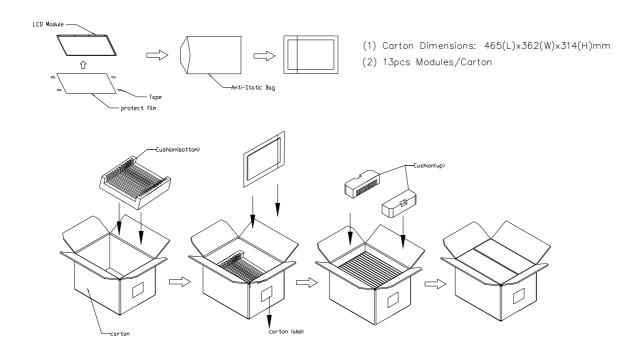


Figure. 9-1 Packing method

Version 2.4 28/32

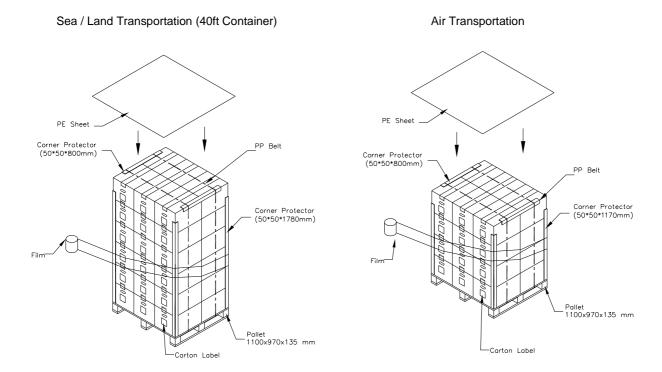
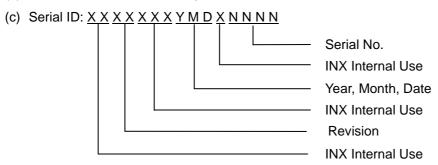


Figure. 9-2 Packing method

Version 2.4 29/32


10. DEFINITION OF LABELS

10.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: G154I1 -LE1
- (b) Revision: Rev. XX, for example: A1, ...C1, C2 ...etc.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

Version 2.4 30/32

10.2 CARTON LABEL

INNOLUX	
PO.NOPart ID.	
Model Name <u>G154I1-LE1 Rev.XX</u> Carton IDQuantities	S
X X X X X X X X X X X X X X M Made in Taiwan	GP RoHS

(a) P/N: Internal control

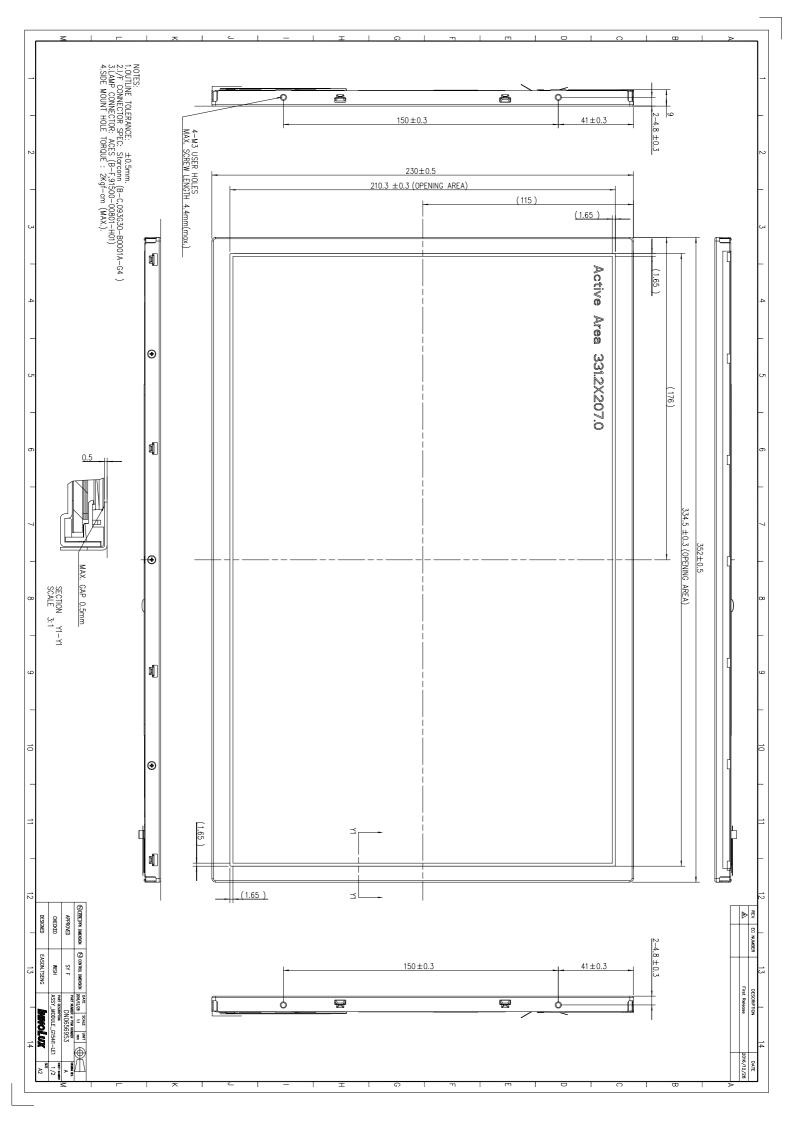
(b) Model Name: G154I1-LE1

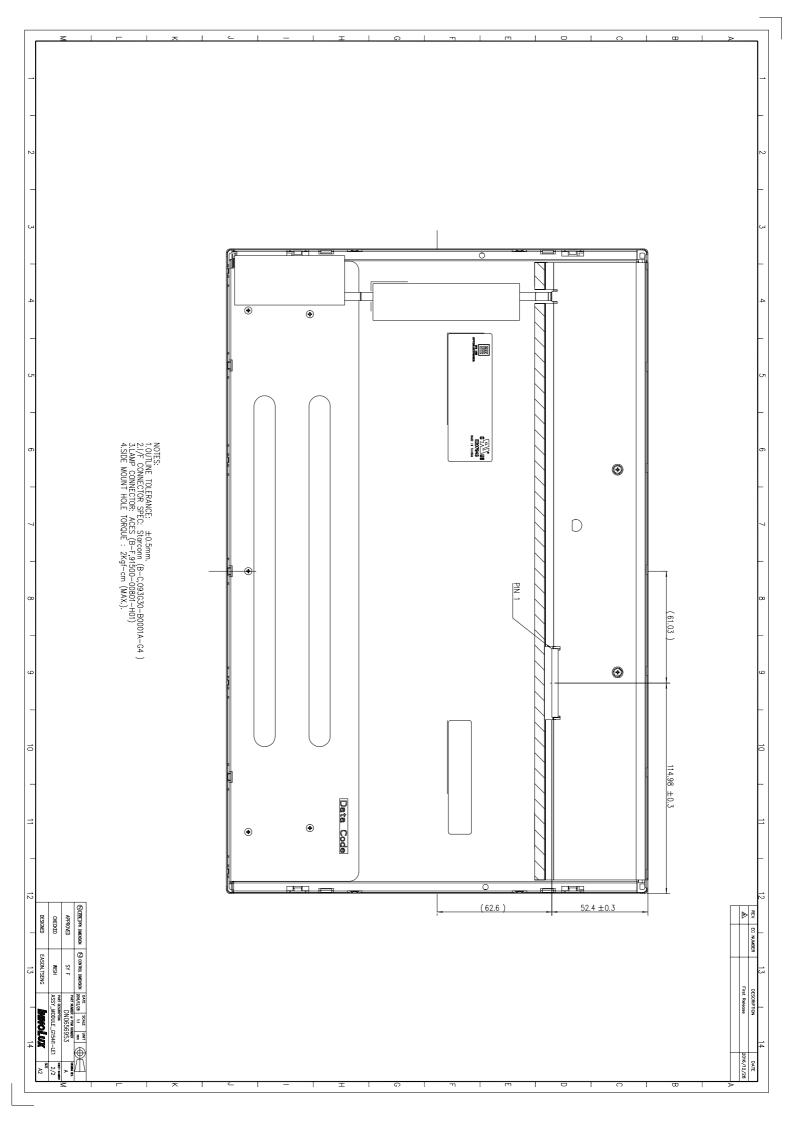
(c) Production year and month: shown at left down corner

(d) Production location: Made In XXXX. XXXX stands for production location.

Version 2.4 31/32

11. PRECAUTIONS


11.1 ASSEMBLY AND HANDLING PRECAUTIONS


- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10) When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly.
- (11) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

11.2 SAFETY PRECAUTIONS

- (1) Do not disassemble the module or insert anything into the Backlight unit.
- (2) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (3) After the module's end of life, it is not harmful in case of normal operation and storage.

Version 2.4 32/32

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894450-0
E-Mail: info@fortecag.de
Internet: www.fortecag.de

Fortec Group Members

Austria

Distec GmbH Office Vienna

Nuschinggasse 12 1230 Wien

Phone: +43 1 8673492-0
E-Mail: info@distec.de
Internet: www.distec.de

Germany

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894363-0
E-Mail: info@distec.de
www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: +41 44 7446111
E-Mail: info@altrac.ch
Internet: www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: info@displaytechnology.co.uk
Internet: www.displaytechnology.co.uk

USA

Apollo Display Technologies, Corp.

87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

 Phone:
 +1 631 5804360

 E-Mail:
 info@apollodisplays.com

 Internet:
 www.apollodisplays.com