

Datasheet

Innolux

G150X1-L02

CH-01-006

Version 2.0

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Doc. Number :

Tentative Specification Preliminary Specification Approval Specification

MODEL NO.: G150X1 SUFFIX: L02

Customer:	
APPROVED BY	SIGNATURE
<u>Name / Title</u> Note	
Please return 1 copy for signature and comments.	your confirmation with your

記錄	工作	審核	角色	投票
2010-10-27 13:46:14	APPL 產品管理處	張喻翔	Director	Accept

- CONTENTS -

REVISION HISTORY	 3
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 FEATURES 1.3 APPLICATION 1.4 GENERAL SPECIFICATIONS 1.5 MECHANICAL SPECIFICATIONS	 4
2. ABSOLUTE MAXIMUM RATINGS 2.1 ABSOLUTE RATINGS OF ENVIRONMENT 2.2 ELECTRICAL ABSOLUTE RATINGS 2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	 6
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE 3.2 BACKLIGHT UNIT	 7
4. BLOCK DIAGRAM 4.1 TFT LCD MODULE 4.2 BACKLIGHT UNIT	 11
5. INPUT TERMINAL PIN ASSIGNMENT 5.1 TFT LCD MODULE 5.2 BACKLIGHT UNIT 5.3 COLOR DATA INPUT ASSIGNMENT	 12
6. INTERFACE TIMING 6.1 INPUT SIGNAL TIMING SPECIFICATIONS 6.2 POWER ON/OFF SEQUENCE	 14
7. OPTICAL CHARACTERISTICS 7.1 TEST CONDITIONS 7.2 OPTICAL SPECIFICATIONS	 17
8. RELIABILITY TEST CRITERIA	 21
9. PRECAUTIONS 9.1 HANDLING PRECAUTIONS 9.2 STORAGE PRECAUTIONS 9.3 OPERATION PRECAUTIONS	 22
10. PACKAGING 10.1 PACKING SPECIFICATIONS 10.2 PACKING METHOD	 24
11. DEFINITION OF LABELS	 26
12. MODULE DRAWING	 27

REVISION HISTORY

Version	Date	Section	Description
Ver. 2.0	Dec.15, '06	All	Approval Specification was first issued.
Ver.2.1	Aug.26, '08	3.2 7.2	Backlight Unit : Modify Note(5) Statement.
		1.2	Optical Specification : Modify cross talk & viewing angle condition BM-5A → USB2000
			Optical Specification : Modify Note(6) Measurement Setup Figure.
		9.1	Add precaution of "Image sticking" in section 9.1 Assembly and handling precautions
			(12) Do not keep same pattern in a long period of time. It may cause image sticking on LCD
Ver. 2.2	Oct 22, '10	3.2 8	Add cautionary statement to Note(5) about life time vs. operating conditions. Split reliability test criteria from 2.1 to Chapter 8.

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G150X1-L02 is a 15.0" TFT Liquid Crystal Display module with 2 CCFL Backlight units and 20 pins LVDS interface. This module supports 1024 x 768 XGA mode and can display 16.2M colors.

The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 15.0" XGA LCD panel and the inverter module for Backlight is not built in.

1.2 FEATURES

- XGA (1024 x 768 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- PSWG (Panel Standardization Working Group)
- Wide operating temperature.
- RoHS compliance

1.3 APPLICATION

-TFT LCD Monitor

- -TFT LCD TV
- Factory Application
- Amusement
- Vehicle

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	304.128 (H) x 228.096(V) (15.0" diagonal)	mm	(1)
Bezel Opening Area	307.4(H) x 231.3(V)	mm	(')
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	1024 x R.G.B x 768	pixel	-
Pixel Pitch	0.297(H) x 0.297(W)	mm	-
Pixel Arrangement	RGB vertical Stripe	-	-
Display Colors	16,194,277	color	-
Display Mode	Normally White	-	-
Surface Treatment	Hard Coating (3H), Anti-Glare (Haze 25)	-	-

Version 2.2

1.5 MECHANICAL SPECIFICATIONS

lte	em	Min.	Тур.	Max.	Unit	Note
	Horizontal(H)	326.0	326.5	327.0	mm	(1)
Module Size	Vertical(V)	253.0	253.5	254.0	mm	(1)
	Depth(D)	-	-	14.35	mm	(1)(2)
We	eight	-	-	1100	g	-

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) The depth is without connector.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Svmbol	Va	lue	Unit	Note
lien	Symbol	Min.	Max.	Offic	Note
Storage Temperature	T _{ST}	-40	80	°C	(1)
Operating Ambient Temperature	T _{OP}	-30	70	٥C	(1)

Note (1) No display malfunctions.

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Itom	Symbol	Va	lue	Lloit	Noto	
Item	Symbol	Min.	Max.	Unit	Note	
Power Supply Voltage	V _{DD}	-0.3	4.0	V		

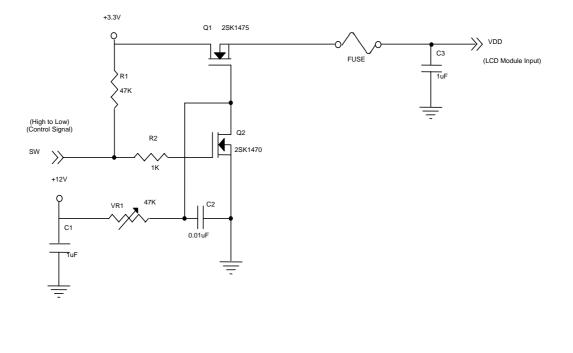
2.2.2 BACKLIGHT UNIT

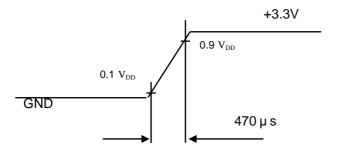
ltem	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Unit	Note
Lamp Voltage	VL	-	2.5K	V _{RMS}	(1), (2), I _L = 8 mA
Lamp Current	١L	-	8.5	mA _{RMS}	(1), (2)
Lamp Frequency	FL	40	80	KHz	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation

should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for lamp (Refer to Section 3.2 for further information).

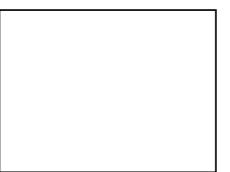

3. ELECTRICAL CHARACTERISTICS


3.1 TFT LCD MODULE(1)

Parameter		Symbol	Value			Unit	Note
		Symbol	Min.	Тур.	Max.	Offic	NOLE
Power Supply Voltage		V _{DD}	3.0	3.3	3.6	V	-
Ripple Voltage	Ripple Voltage		-	-	100	mVp-p	
Rush Current	Rush Current		-	-	2.0	Α	(2)
Power Supply Current	White	lcc	-	500		mA	(3)a
	Black		-	750		mA	(3)b
Differential Input Voltage for	"H" Level	V _{IH}	-	-	100	mV	-
LVDS Receiver Threshold	"L" Level	VIL	-100	-	-	mV	-
Terminating Resistor		R _T		100	-	Ohm	-

Note (1) The module should be always operated within above ranges.

Note (2) Measurement Conditions:



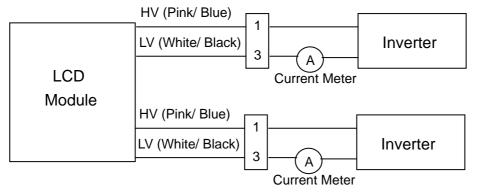
\ /		\sim
$\sqrt{\alpha r}$	einn	• • • • • •
	SIULI	2.2

- Note (3) The specified power supply current is under the conditions at V_{DD} =3.3V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.
 - a. White Pattern

b. Black Pattern

Active Area

Active Area



3.2 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Parameter	Symbol		Value	Unit	Note	
Farameter	Symbol	Min.	Тур.	Max.	Offic	NOLE
Lamp Input Voltage	VL	522	580	638	V _{RMS}	$I_{L} = 8.0 \text{ mA}$
Lamp Current	١L	2	8	8.5	mA_{RMS}	(1)
Lamp Turn On Voltage	Vs			1400(0)	V _{RMS}	(2)
Lamp rum On voltage	vs			1210 (25)	V _{RMS}	(2)
Operating Frequency	FL	40		80	KHz	(3)
Lamp Life Time	L _{BL}	50000			Hrs	(5)
Power Consumption	PL	4.18	4.64	5.1	W	(4), $I_L = 8.0 \text{ mA}$

Note (1) Lamp current is measured by utilizing a high frequency current meter as shown below:

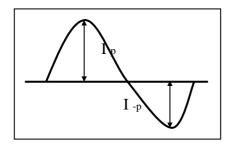
- Note (2) The voltage that must be larger than Vs should be applied to the lamp for more than 1 second after startup. Otherwise, the lamp may not be turned on normally.
- Note (3) The lamp frequency may generate interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible.

Note (4) $P_L = I_L X V_L$

- Note (5) The lifetime of lamp is defined as the time when it continues to operate under the conditions Ta = 25 ± 2 °C and I_L =8.0mA_{RMS} until one of the following events occurs:
 - (a) When the brightness becomes \leq 50% of its original value.
 - (b) When the effective ignition length becomes $\leq 80\%$ of its original value. (The effective ignition length is a scope that the luminance is over 70% of that at the center point.)

Both life time and brightness are reduced if the lamp is operated under low temperature environment. The life time of a lamp would also shorten when operated in portrait position or cannot warm up adequately, e.g. turned ON/OFF frequently.

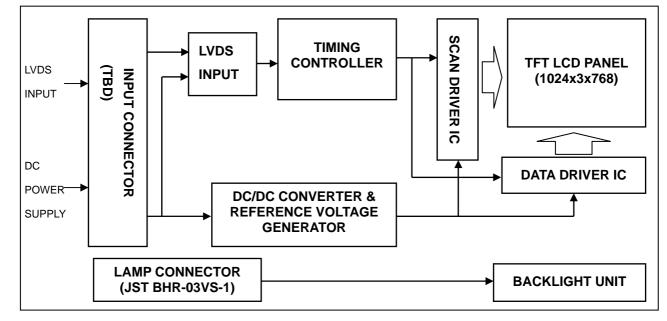
Note (6) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid generating too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the

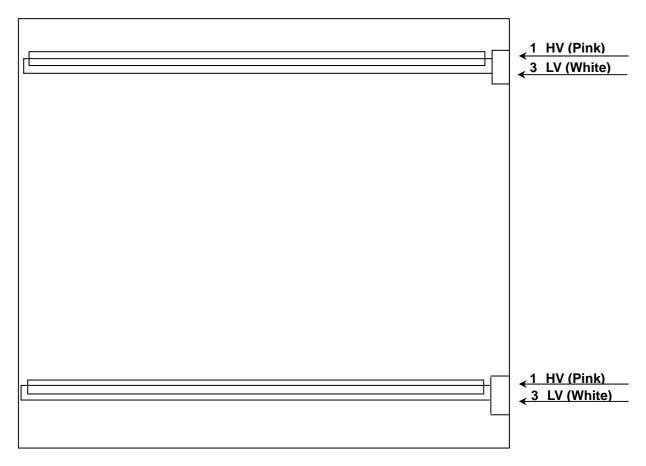


inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument.

The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform.(Unsymmetrical ratio is less than 10%) Please do not use the inverter which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.

Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current.


- a. The asymmetry rate of the inverter waveform should be 10% below;
- b. The distortion rate of the waveform should be within $2 \pm 10\%$;
- c. The ideal sine wave form shall be symmetric in positive and negative polarities



4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

4.2 BACKLIGHT UNIT

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin No.	Symbol	Function	Polarity	Note
1	VDD	Power Supply +3.3V(typical)		
2	VDD	Power Supply +3.3V(typical)		
3	GND	Ground		
4	GND	Ground		
5	RX0-	LVDS Differential Data Input	Negative	
6	RX0+	LVDS Differential Data Input	Positive	
7	GND	Ground		
8	RX1-	LVDS Differential Data Input	Negative	
9	RX1+	LVDS Differential Data Input	Positive	
10	GND	Ground		
11	RX2-	LVDS Differential Data Input	Negative	
12	RX2+	LVDS Differential Data Input	Positive	
13	GND	Ground		
14	RXCLK-	LVDS Differential Data Input	Negative	
15	RXCLK+	LVDS Differential Data Input	Positive	
16	GND	Ground		
17	RX3-	LVDS Differential Data Input	Negative	
18	RX3+	LVDS Differential Data Input	Positive	
19	GND	Ground		
20	NC	tied to ground		

(1)Connector Part No.: [Hirose] DF14H-20P-1.25H

(2)Matching socket Part No.: [Hirose] DF14-20S-1.25C

5.2 BACKLIGHT UNIT

Pin	Symbol	Description	Color
1	HV	High Voltage	Pink/ Blue
3	LV	Ground	White/ Black

Note (1) Connector Part No.: BHR-03VS-1 (JST) or equivalent

Note (2) Matching Connector Part No.: TBD or equivalent

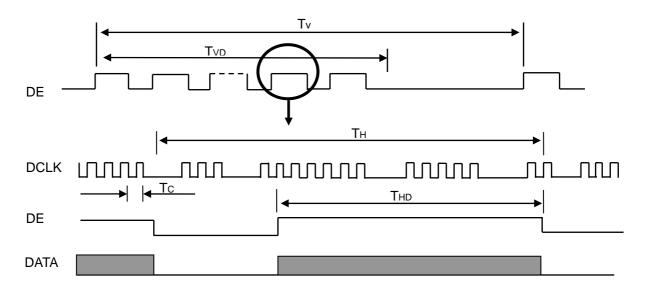
5.3 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D	ata	<u> </u>	nal			•							
	Color		1	1	Re			1					Gre		1	1	1		1		Bl		1	1	
	Dist	R7	R6	R5	R4	R3	R2	R1	R0	R7	R6	G5	G4	G3	G2	G1	G0	R7	R6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
. .	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	1	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(252)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reu	Red(252)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(252)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Crow	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(252)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Crow	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Blue	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(252)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

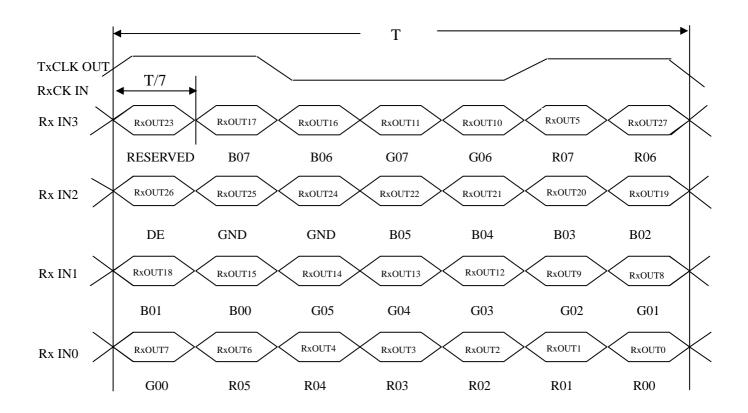
6. INTERFACE TIMING

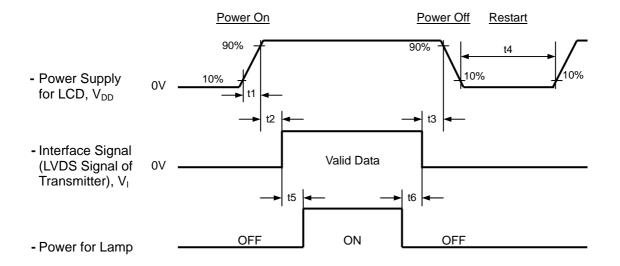

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Pixel Clock	1/T _C	-	65	80	MHz	-
	Vertical Total Time	Τv	780	806	1200	Т _Н	-
DE	Vertical Address Time	T _{VD}	768	768	768	Т _Н	-
DE	Horizontal Total Time	Τ _H	1140	1344	1600	T _c	-
	Horizontal Address Time	T _{HD}	1024	1024	1024	T _C	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.


INPUT SIGNAL TIMING DIAGRAM


PRODUCT SPECIFICATION

TIMING DIAGRAM of LVDS

6.2 POWER ON/OFF SEQUENCE

Timing Specifications:

0.5 < t1	10 msec
0 < t2	50 msec
0 < t3	50 msec
t4	500 msec

- t5 200 msec
- t6 200 msec

Note (1) Please avoid floating state of interface signal at invalid period.

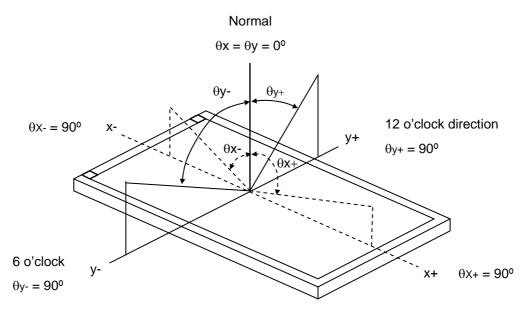
- Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD V_{DD} to 0 V.
- Note (3) The Backlight inverter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight inverter power must be turned off before the power supply for the logic and the interface signal is invalid.

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Та	25±2	°C			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	V _{DD}	3.3	V			
Input Signal	According to typical v	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
Inverter Current	ΙL	8.0	mA			
Inverter Operating Frequency	FL	51	KHz			
Inverter	SUMIDA H05 5052					

The measurement methods of optical characteristics are shown in Section 7.2. The following items should be measured under the test conditions described in Section 7.1 and stable environment shown in Note (4).


7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (6).

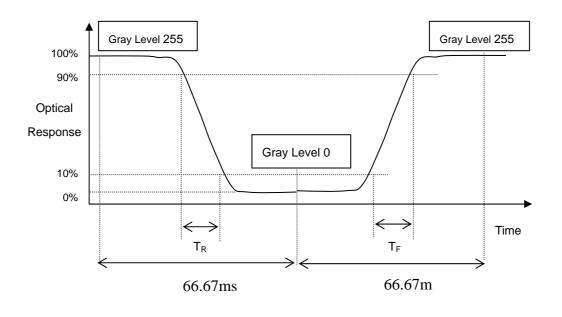
Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx			0.613				
	Reu	Ry			0.344				
	Green	Gx			0.302				
Color	Gleen	Gy		Тур -	0.567	Тур+		(1), (6)	
Chromaticity	Blue	Bx	θ _x =0°, θ _Y =0°	0.03	0.144	0.03		(1), (0)	
	Diue	Ву	CS-1000T		0.102				
	White	Wx			0.313				
	vvriite	Wy			0.329				
Center Luminance of White Contrast Ratio		L _C		400	450	-	cd/m ²	(4), (6)	
		CR		480	700	-	-	(2), (6)	
Response Time			0_0° 0_0°	-	8	13	ma	(3)	
Response nine		T _F	$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	17	22	ms		
White Variation	White Variation		$\theta_x=0^\circ, \ \theta_Y=0^\circ$	-	1.25	1.4	-	(6), (7)	
Cross Talk		СТ	USB2000			5.0	%	(5), (6)	
Viewing Angle	Horizontal	θ _x +		70	80	-			
	HOHZOHIAI	θ _x -	CR 10	70	80	-	Deg.	(1),(6),	
	Vertical	θγ +	USB2000	70	80	-	Dey.	(8)	
	Vertical	θγ-		70	80	-			

Note (1) Definition of Viewing Angle ($\theta x, \theta y$):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).

Note (3) Definition of Response Time (T_R, T_F) :

Version 2.2

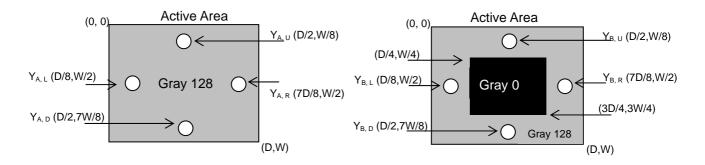
22 October 2010

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of gray level 255 at center point

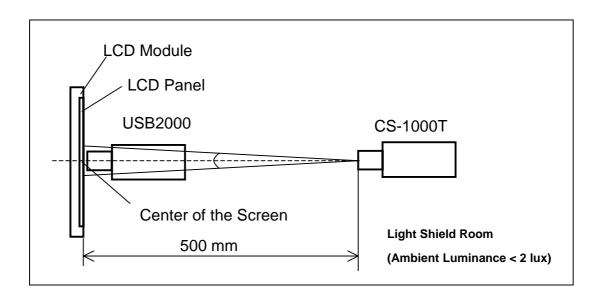
 $L_{\rm C} = L(5)$

L (x) is corresponding to the luminance of the point X at Figure in Note (7).


Note (5) Definition of Cross Talk (CT):

 $CT = |Y_B - Y_A| / Y_A \times 100$ (%)

Where:

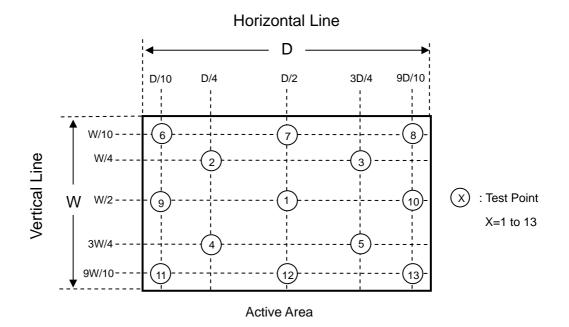

 Y_A = Luminance of measured location without gray level 0 pattern (cd/m²)

 Y_B = Luminance of measured location with gray level 0 pattern (cd/m²)

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Version 2	2.2
-----------	-----


Note (7) Definition of luminance measured points:

Measure the luminance of gray level 255 at point L(1)

Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

$$\delta W = \frac{Maximum [L (1), L (6), L (7), L (8), L (9), L (10), L (11), L (12), L (13)]}{Minimum [L (1), L (6), L (7), L (8), L (9), L (10), L (11), L (12), L (13)]}$$

Note (8) TN type has Gray scale inversion occurs at $\theta_{y+} = 40^{\circ}$

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note			
High Temperature Storage Test	80°C, 240 hours				
Low Temperature Storage Test	-40°C, 240 hours]			
Thermal Shock Storage Test	-40°C, 0.5hour 80 , 0.5hour; 100cycles, 1hour/cycle				
High Temperature Operation Test	70ºC, 240 hours	(1) (2)			
Low Temperature Operation Test	-30°C, 240 hours	(1), (2)			
High Temperature & High Humidity Operation Test	60ºC, RH 90%, 240hours				
Heat Cycle Operation Test	-30°C, 1hour 70°C, 1hour; 50cycles, 4hour/cycle				
	150pF, 330 , 1sec/cycle				
ESD Test (Operation)	Condition 1 : panel contact, ±8KV	(2)			
	Condition 2 : panel non-contact ±15KV				
Shock (Non-Operating) 50G, 11ms, half sine wave, 1 time for ± X, ± Y, ± Z direct					
Vibration (Non-Operating)	1.5G, 10 ~ 500 Hz sine wave, 1.5mm Max, 30min/cycle, 1 cycles each X, Y, Z direction	(2), (3)			

Note (1) No condensation of water.

Note (2) No display malfunction.

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Note (4) Temperature of panel display surface area should be 80 °C Max.

9. PRECAUTIONS

9.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.
- (12) Do not keep same pattern in a long period of time. It may cause image sticking on LCD.

9.2 STORAGE PRECAUTIONS

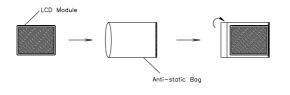
- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

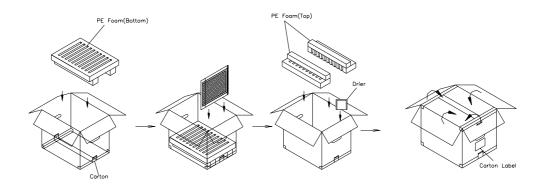
9.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.

The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with inverter. Do not disassemble the module or insert anything into the Backlight unit.

Version 2.2

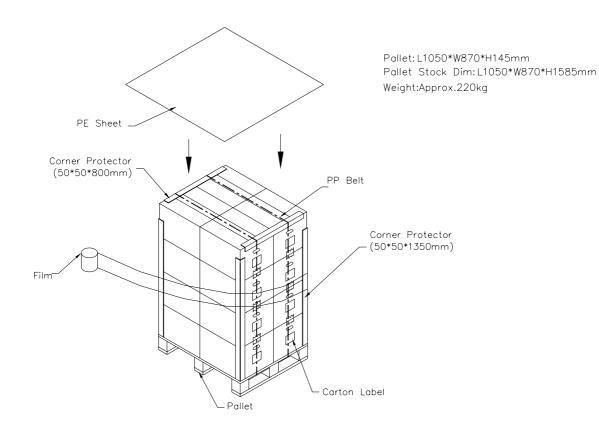

22 October 2010



10. PACKAGING

10.1 PACKING SPECIFICATIONS

- (1) 10 LCD modules / 1 Box
- (2) Box dimensions : 511(L) X 420(W) X 360(H) mm
- (3) Weight : approximately 12.7Kg (10 modules per box)


- (1) 10 modules/1 box
- (2) Carton dimensions : 511(L)x420(W)x360(H)mm
- (3) Weight : approximately 12.7kg(10 modules per box).

Figures 10-1

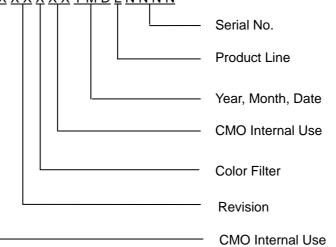
PRODUCT SPECIFICATION

10.2 PACKING Method

Figures 10-2

	Vei	rsior	า 2.2
--	-----	-------	-------

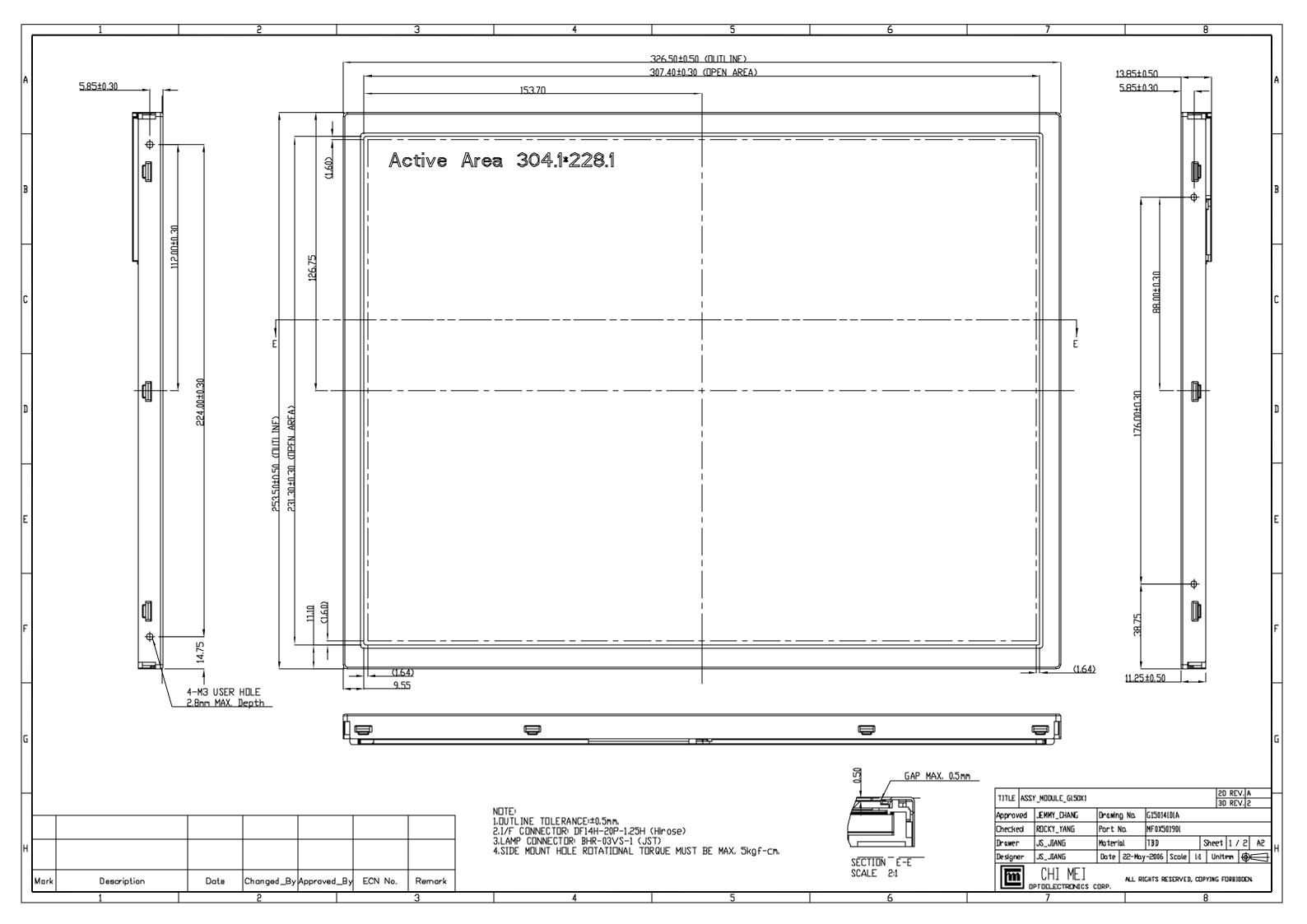
22 October 2010

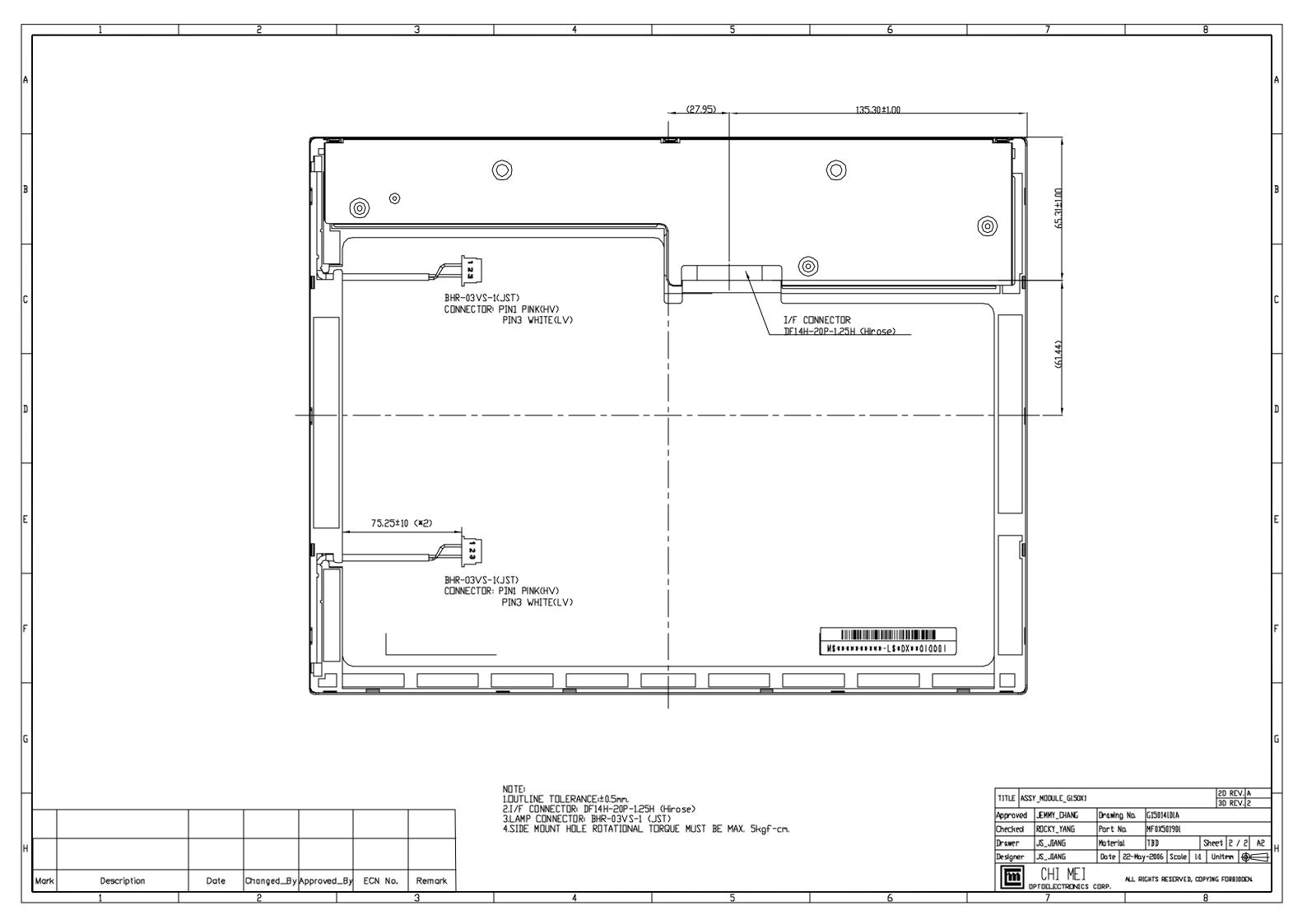

11. DEFINITION OF LABELS

11.1 CMO MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: G150X1 –L02
- (b) Revision: Rev. XX, for example: C1, C2 ...etc.
- (c) Serial ID: X X X X X X X Y M D L N N N N


Serial ID includes the information as below:


(a) Manufactured Date: Year: 1~9, for 2000~2009

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I and O

- (b) Revision Code: cover all the change
- (c) Color Filter: 0 ->CMO, 2 -> Toppan
- (d) Serial No.: Manufacturing sequence of product
- (e) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

FORTEC Elektronik AG Lechwiesenstr. 9 86899 Landsberg am Lech

Phone: E-Mail: Internet: +49 8191 91172-0 sales@fortecag.de www.fortecag.de

FORTEC Elektronik AG Office Vienna Nuschinggasse 12 1230 Wien

Phone: E-Mail: Internet: +43 1 8673492-0 office@fortec.at www.fortec.at

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: E-Mail: Internet: +49 89 894363-0 info@distec.de www.distec.de

ALTRAC AG Bahnhofstraße 3

5436 Würenlos

Phone: E-Mail: Internet:

info@altrac.ch www.altrac.ch

+41 44 7446111

Display Technology Ltd. Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: E-Mail: Internet: +44 1480 411600 info@displaytechnology.co.uk www. displaytechnology.co.uk

Apollo Display Technologies, Corp. 87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: E-Mail: Internet: +1 631 5804360 info@apollodisplays.com www.apollodisplays.com

Austria

Fortec Group Members

United Kingdom

DISTEC

FORTEC GROUP MEMBER

