

Datasheet

InnoLux

G121ICE-L01

CH-01-068

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Doc. Number :
☐ Tentative Specification
☐ Preliminary Specification
Approval Specification

MODEL NO.: G121ICE SUFFIX: L01

Customer: APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for signature and comments.	your confirmation with your

Approved By	Checked By	Prepared By
Matt.lc.chen	Sen.lin	Miyabi.ko

Version 2.0 16 Oct2019 1/29

CONTENTS

REVISION HISTORY	 4
1. GENERAL DESCRIPTION 1.1 OVERVIEW 1.2 GENERAL SPECIFICATIONS	 4
2. MECHANICAL SPECIFICATIONS	 4
3. ABSOLUTE MAXIMUM RATINGS 3.1 ABSOLUTE RATINGS OF ENVIRONMENT 3.2 ELECTRONICAL ABSOLUTE RATINGS 3.2.1 TFT LCD MODULE 3.2.2 BACKLIGHT UNIT	 5
4. ELECTRICAL SPECIFICATION 4.1 FUNCTION BLOCK DIAGRAM 4.2 INTERFACE CONNECTIONS 4.3 ELECTRICAL CHARACTERISICS 4.3.1 LCD ELECTRONICS SPECIFICATION 4.3.2 BACKLIGHT UNIT 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE	6
5. OPTICAL CHARACTERISTICS 5.1 TEST CONDITIONS 5.2 OPTICAL SPECIFICATIONS	 20
6. Reliability Test Criteria	 23
7.Packing 7.1 PACKING SPECIFICATIONS 7.2 PACKING METHOD 7.3 UN-PACKING METHOD	 24
8. MODULE LABEL 8.1 MODULE LABEL	 27
9. PRECAUTIONS 9.1 ASSEMBLY AND HANDLING PRECAUTIONS 9.2 STORAGE PRECAUTIONS 9.3 OPERATION PRECAUTIONS 9.4 OTHER PRECAUTIONS	 28
10.MECHANICAL CHARACTERISTICS	 29

REVISION HISTORY

Version	Date	Section	Description
Ver. 0.1	Apr.8,2019	All	Tentative Spec was first issued.
Ver. 1.0	Sep.2,2019		Preliminary Spec was first issued.
Ver. 2.0	Oct.16,2019		Approval Spec was first issued.

Version 2.0 16 Oct2019 3/29

INNOLUX 群創光電

PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G121ICE-L01 is a 12.1" TFT Liquid Crystal Display module with LED Backlight unit LVDS interface. This module supports 1280 x 800 Wide-XGA AAS mode and can display 262k/16.7M colors . The LED converter for Backlight is built in control board.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	12.1" real diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1280 x R.G.B. x 800	pixel	-
Pixel Pitch	0.204(H) x 0.204 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262k/16.7M	color	-
Transmissive Mode	Normally Black	-	-
Surface Treatment	AG type, 3H hard coating	-	-
Luminance, White	600	Cd/m2	
Power Consumption	11.05W (white pattern)	W	Typ. (2)

2. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	277.5	278	278.5	mm	
Module Size	Vertical (V)	183.5	184	184.5	mm	(1)
	Thickness (T)	9.5	10	10.5	mm	
Bezel Area	Horizontal	263.82	264.12	264.42	mm	
bezei Alea	Vertical	165.9	166.2	166.5	mm	
Active Area	Horizontal	-	261.12	-	mm	
Active Area	Vertical	-	163.2	-	mm	
Weight		-	455	-	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

(2) The Module Power Consumption is specified at 3.3V, white pattern and 100% duty for LED backlight.

Version 2.0 16 Oct2019 4/29

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Value		Lloit	Note
item	Symbol	Min.	Max.	Unit	Note
Storage Temperature	TST	-30	85	°C	(1)
Operating Ambient Temperature	TOP	-30	80	°C	(1), (2)

Note (1)

- (a) 90 %RH Max. (Ta <= 40 °C).
- (b) Wet-bulb temperature should be 39 °C Max.
- (c) No condensation.

3.2 ELECTRICAL ABSOLUTE RATINGS

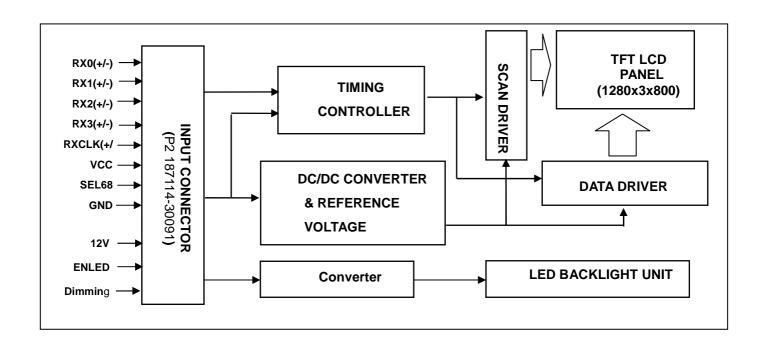
3.2.1 TFT LCD MODULE

Item	Symbol	Val	ue	Unit	Note
item	Symbol	Min.	Max.		
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)
Logic Input Voltage	V _{IN}	-0.3	Vcc+0.3	V	(1)

3.2.2 BACKLIGHT UNIT

Itom		Value	Unit	Note	
Item	Min	Тур.	Max.	Offic	Note
LED Converter Input voltage	10.8	12.0	13.2	V_{DC}	(4) (0)
LED Converter Input Current	-	8.0	ı	A_{DC}	(1), (2)

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.


Note (2) Specified values are for LED (Refer to Section 3.2 for further information).

Version 2.0 16 Oct2019 5/29

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

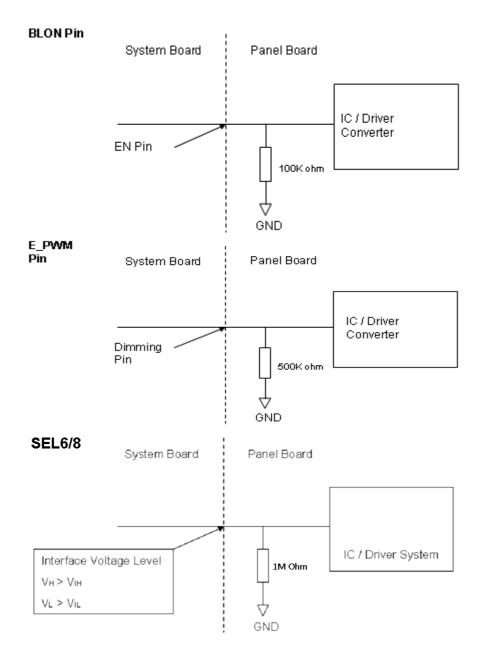
4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin No.	Symbol	Description	Note
1	12V	LED power	-
2	12V	LED power	-
3	12V	LED power	-
4	12V	LED power	-
5	ENLED	Enable pin	(3)
6	Dimming	Backlight Adjust	(3)
7	NC	No Connection or Ground	-
8	NC	No Connection or Ground	-
9	VCC	Power supply: +3.3V	
10	VCC	Power supply: +3.3V	-
11	GND	Ground	-
12	GND	Ground	-
13	RX0-	Negative transmission data of pixel 0	-
14	RX0+	Positive transmission data of pixel 0	-
15	GND	Ground	-

Version 2.0 16 Oct2019 6/29

16	RX1-	Negative transmission data of pixel 1	-
17	RX1+	Positive transmission data of pixel 1	-
18	GND	Ground	-
19	RX2-	Negative transmission data of pixel 2	-
20	RX2+	Positive transmission data of pixel 2	-
21	GND	Ground	-
22	RXCLK-	Negative of clock	-
23	RXCLK+	Positive of clock	-
24	GND	Ground	-
25	RX3-	Negative transmission data of pixel 3	-
26	RX3+	Positive transmission data of pixel 3	-
27	GND	Ground	-
		LVDS 6/8 bit select function control,	
28	SEL6/8	Low → 6 bit Input Mode	(2) (3)
		High → 8bit Input Mode	
29	GND	Ground	-
30	NC	No Connection or Ground	-

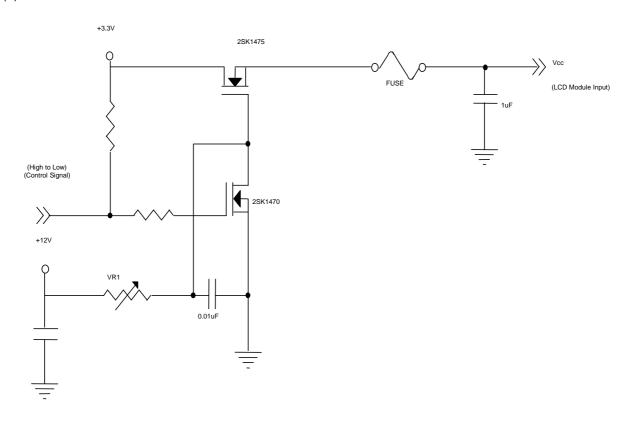

Note (1) Connector Part No.: P2 187114-30091

Note (2) "Low" stands for 0V. "High" stands for 3.3V

Note (3) ENLED(BLON), Dimming(E_PWM), SEL6/8 as shown below :

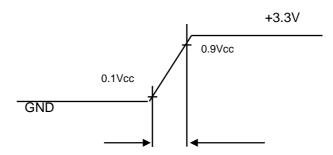
Version 2.0 16 Oct2019 7/29

Version 2.0 16 Oct2019 8/29

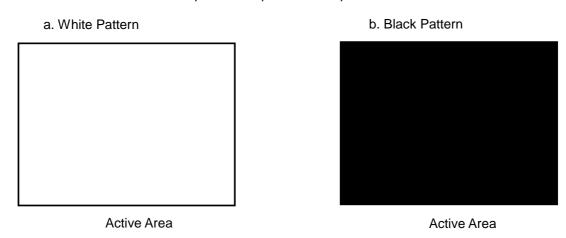

4.3 ELECTRICAL CHARACTERISTICS

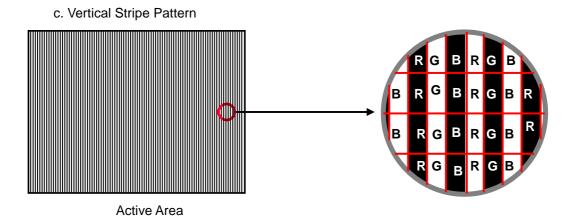
4.3.1 LCD ELETRONICS SPECIFICATION

Dow		Cumahad		Value	!	المنا	Note
Para	ameter	Symbol	Min.	Тур	Max.	Unit	Note
Power Su	pply Voltage	Vcc	3.0	3.3	3.6	V	-
	Permissive Ripple Voltage		- 50 -		-	mV	-
Rush	Current	I _{RUSH}		1.5		Α	(2)
Initial Sta	age Current	I _{IS}	1	-	1.0	Α	(2)
Power	White	_	400	440	480	mΑ	(3)a
Supply Current	Black	-	260	290	320	mA	(3)b
	erential Input Threshold	$V_{TH(LVDS)}$	+100	-	-	mV	V _{CM} =1.2V
	erential Input Threshold	V _{TL(LVDS)}	-	-	-100	mV	V _{CM} =1.2V
	LVDS Common Mode Voltage		1.125	ı	1.375	V	
	LVDS Differential Input Voltage		100	•	600	mV	
Terminat	ing Resistor	R_T	-	100	-	Ohm	


Note (1) The assembly should be always operated within above ranges.

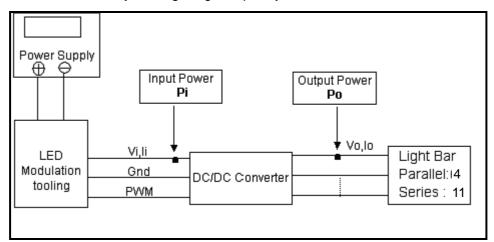
Note (2) Measurement Conditions:




Version 2.0 16 Oct2019 9/29

VCC rising time is 470us

Note (3)The specified power supply current is under the conditions at Vcc = 3.3 V, $Ta = 25 \pm 2 \, ^{\circ}\text{C}$, $f_v = 60 \text{ Hz}$, whereas a power dissipation check pattern below is


Version 2.0 16 Oct2019 10/29

4.3.2 BACKLIGHT UNIT

D	-1	0		Value		Uni	Maria
Param	eter	Symbol	Min.	Тур.	Max.	t	Note
`	Converter voltage)	Vi	10.8	12.0	13.2	V_{DC}	(Duty 100%)
ripple v		Vi _{RP}	-	1	350	mV	
	Converter current)	l _i	-	0.8	1.0	A_{DC}	@ Vi = 12V (Duty 100%)
	Converter n current)	lirush	-	-	3.0	А	<pre>@ Vi rising time=10ms (Vi=12V)</pre>
Input F Consu	Power mption	Pi	-	9.6	1	W	(1)
EN Control	Backlight on	ENLED	2.5	3.3	5.0	V	
Level	Backlight off	(BLON)	0		0.3	V	
PWM Control	PWM High Level	Dimming	2.5		5.0	V	
Level	PWM Low Level	(E_PWM)	0		0.15	V	
PWM Con Frequency		f _{PWM}	190	200	20k	Hz	(3)
PWM Nois	se Range	VNoise	-	1	0.1	V	
PWM Con	trol Duty	_	5		100	%	(3), Suggestion@ 190Hz≦f _{PWM} <1kHz
Ratio		-	20		100	%	(3), @ 1kHz≦f _{PWM} ≦20kHz
LED Li	ife Time	L_{BL}	50000	-	-	Hrs	(2)

Note (1)LED current is measured by utilizing a high frequency current meter as shown below:

Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift.

Note (3) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%.

1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%.

Version 2.0 16 Oct2019 11/29

If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a suggestion that PWM control frequency should be less than **1K**Hz.

4.4 LVDS INPUT SIGNAL SPECIFICATIONS

4.4.1 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 6-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color.

				Data Signal															
	Color			Re	ed					Gre	en					Bl	ue		
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(61)	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0
	Red(62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	: (21)	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(61)	0	0	0	0	0	0	1	1	1	1	0	1	0	0	0	0	0	0
	Green(62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	Green(63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	: Diver(04)	:	:	:	:	:	:	:	:	:	:		:	;	;	;	-	:	;
Blue	Blue(61)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	1
	Blue(62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0
	Blue(63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color.

Color	Data Signal
-------	-------------

Version 2.0 16 Oct2019 12/29

			Red							Gı	reen				Blue										
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	В4	ВЗ	B2	В1	В0
Basic Colors	Black Red Green Blue Cyan Magenta Yellow White	0 1 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 1 0 0 0 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 1 0 1 0 1	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0	0 0 0 1 1 1 0
Gray Scale Of Red	Red(0) / Dark Red(1) Red(2) : : Red(253) Red(254) Red(255)	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 1 : : 0 1 1	0 1 0 : : 1 0 1	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	000:000	0 0 0 : : 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0
Gray Scale Of Green	Green(0)/ Dark Green(1) Green(2) : : Green(253) Green(254) Green(255)	0 0 0 : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1 1	0 0 1 : 0 1	0 1 0 : : 1 0 1	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0
Gray Scale Of Blue	Blue(0) / Dark Blue(1) Blue(2) : : Blue(253) Blue(254) Blue(255)	0 0 0 : 0 0 0	0 0 0 : : 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 : : 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 : : 0 0	0 0 0 : : 0 0	0 0 0 : : 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 0 : : 1 1 1	0 0 0 : : 1 1	0 0 1 : 0 1	0 1 0 : : 1 0 1

Note: 0: Low Level Voltage, 1: High Level Voltage

Version 2.0 16 Oct2019 13/29

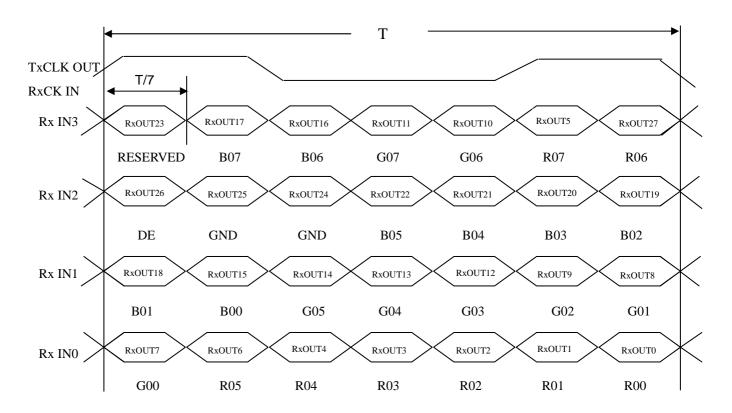
4.5 DISPLAY TIMING SPECIFICATIONS

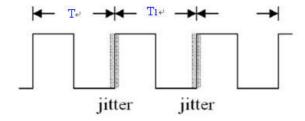

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	66.1	71	74.7	MHz	-
	Period	Tc	13.4	14.1	15.1	ns	
	Input cycle to cycle jitter	T _{rcl}			200	ns	(a)
	Input Clock to data skew	TLVCCS	-0.02*Tc		0.02*Tc	ps	(b)
LVDS Clock	Spread spectrum modulation range	F _{clkin_mod}			1.02*Fc	MHz	(0)
	Spread spectrum modulation frequency	F _{SSM}		-	200	KHz	(c)
	High Time	T _{ch}		4/7		T_ch	
	Low Time	T _{cl}		3/7		T_ch	
	Frame Rate	Fr		60		Hz	Tv=Tvd+Tvb
Vertical Display	Total	Tv	810	823	830	Th	-
Term	Active Display	Tvd	800	800	800	Th	-
	Blank	Tvb	10	23	30	Th	-
	Total	Th	1360	1440	1500	Тс	Th=Thd+Thb
Horizontal Display Term	Active Display	Thd	1280	1280	1280	Тс	-
TOTAL	Blank	Thb	80	160	220	Tc	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

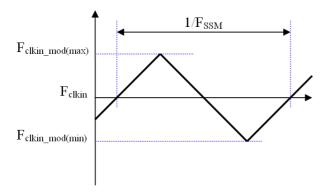
Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.


INPUT SIGNAL TIMING DIAGRAM


Version 2.0 16 Oct2019 14/29

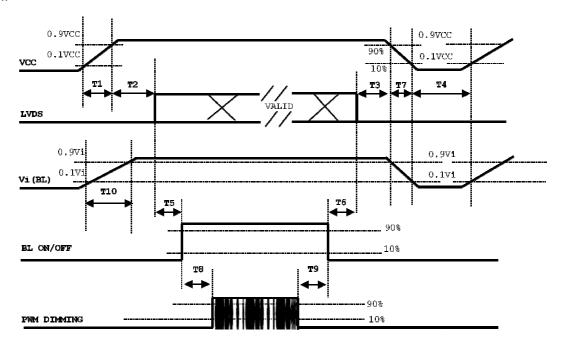
TIMING DIAGRAM of LVDS

Note (a) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = $IT_1 - TI$


Note (b) Input Clock to data skew is defined as below figures.

Version 2.0 16 Oct 2019 15/29

Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures.



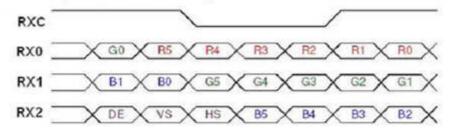
Version 2.0 16 Oct 2019 16/29

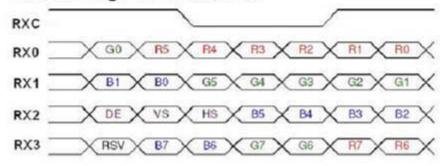
4.6 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Note:

- (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.
- (6) INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec".


Parameter		Linita		
Parameter	Min	Тур	Max	Units
T1	0.5		10	ms
T2	0		50	ms
Т3	0		50	ms
T4	500			ms
T5	450			ms
Т6	200			ms
T7	10		100	ms
Т8	10			ms


Т9	10	 	ms
T10	20	 50	ms

The Input Data Format

SEL 6/8="Low" for 6 Bits LVDS

SEL 6/8="High" for 8 Bits LVDS

Note (1) R/G/B data 7: MSB, R/G/B data 0: LSB

Note (2) Please follow PSWG

Version 2.0 16 Oct 2019 18/29

Signal Name	Description	Remark
R7	Red Data 7 (MSB)	Red-pixel Data
R6	Red Data 6	Each red pixel's brightness data consists of these
R5	Red Data 5	8 bits pixel data.
R4	Red Data 4	
R3	Red Data 3	
R2	Red Data 2	
R1	Red Data 1	
R0	Red Data 0 (LSB)	
G7	Green Data 7 (MSB)	Green-pixel Data
G6	GreenData 6	Each green pixel's brightness data consists of these
G5	GreenData 5	8 bits pixel data.
G4	GreenData 4	
G3	GreenData 3	
G2	GreenData 2	
G1	GreenData 1	
G0	GreenData 0 (LSB)	
B7	Blue Data 7 (MSB)	Blue-pixel Data
B6	Blue Data 6	Each blue pixel's brightness data consists of these
B5	Blue Data 5	8 bits pixel data.
B4	Blue Data 4	
B3	Blue Data 3	
B2	Blue Data 2	
B1	Blue Data 1	
B0	Blue Data 0 (LSB)	
RXCLKIN+	LVDS Clock Input	
RXCLKIN-		
DE	Display Enable	
VS	Vertical Sync	
HS	Horizontal Sync	

Version 2.0 16 Oct 2019 19/29

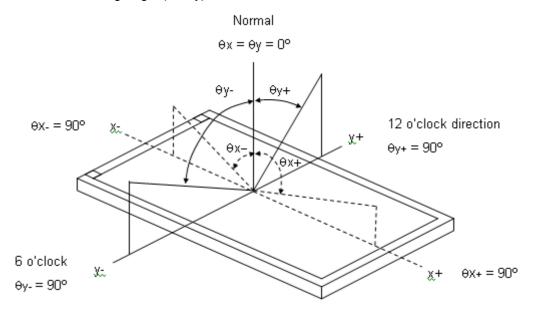
5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V _{CC}	3.3	V
Convertor Voltage	According to typical	volue in "2. ELECTRICA	I CHADACTEDISTICS"
Convertor Duty	According to typical	L CHARACTERISTICS"	

The relative measurement methods of optical characteristics are shown in 5.2. and all items are measured at the center point of screen except white variation. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS


The relative measurement methods of optical characteristics are shown in 5.2. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).

Item	1	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio)	CR		800	1000	,	-	(2), (5)
Pagnanaa Tim		T_R		ı	12	17	ms	(2)
Response Tim	ie	T_{F}	_	-	8	13	ms	(3)
Luminance of	White (5P)	L_c		480	600	-	cd/m ²	(4), (5)
White Variatio	n	δW	$\theta_x=0^\circ, \theta_Y=0^\circ$ Viewing	-	1.25	1.4	-	(5), (6)
	Dod	Rx	Normal		0.652		-	
	Red	Ry	Angle		0.338		-	
	Croon	Gx		T	0.326	T	-	
Color	Green	Gy		Тур.	0.608	Тур. +	-	(1),
Chromaticity	Blue	Bx		0.05	0.150	0.05	-	(5)
	blue	Ву		0.00	0.053	0.00	-	
	White	Wx			0.313		-	
	VVIIILE	Wy			0.329		-	
	Horizo	θ_{x} +		80	88	-		
Viewing	ntal	θ_{x} -	CD>40	80	88	-	Deg	(1),
Angle	Vertic	θ_{Y} +	CR≥10	80	88	-		(5)
	al	θ_{Y} -		80	88	-		

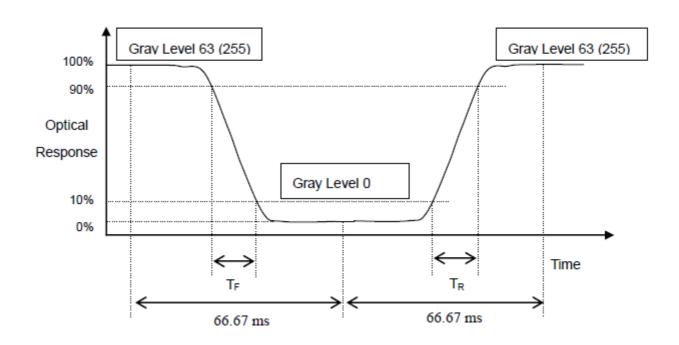
Version 2.0 16 Oct 2019 20/29

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L63: Luminance of gray level 255

L 0: Luminance of gray level 0

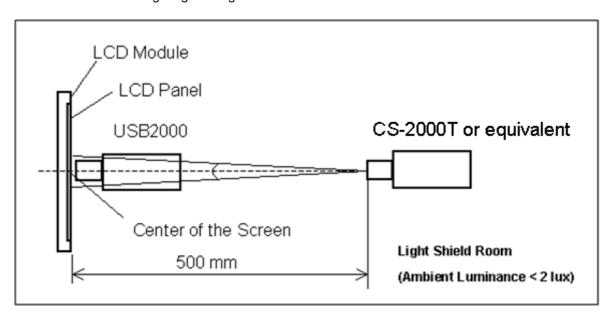
CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Version 2.0 16 Oct 2019 21/29

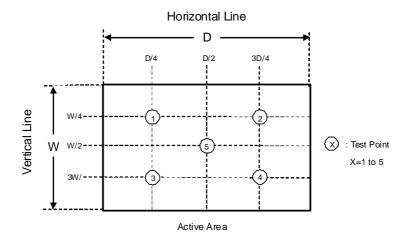
Note (4) Definition of Luminance of White (L_c):


Measure the luminance of gray level 255 at center points

$$L_{c} = L(5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

$$\delta W = \frac{\text{Maximum [L (1), L (2), L (3), L (4), L (5)]}}{\text{Minimum [L (1), L (2), L (3), L (4), L (5)]}}$$

Version 2.0 16 Oct 2019 22/29

6. Reliability Test Criteria

Test Item	Test Condition	Note
High Temperature Storage Test	85°C, 240 hours	
Low Temperature Storage Test	-30°C, 240 hours	(4) (0)
Thermal Shock Storage Test	-30°C, 0.5hour ←→85°C, 0.5hour; 100cycles, 1hour/cycle	(1),(2)
High Temperature Operation Test	80°C, 240 hours	(4),(5)
Low Temperature Operation Test	-30°C, 240 hours	
High Temperature & High Humidity Operation Test	60°C, 90%RH, 240hours	(1),(2) (4),(6)
Shock (Non-Operating)	200G,2ms, half sine wave, 1 time for ± X, ± Y, ± Z.	(2)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(2)(3)

- Note (1) There should be no condensation on the surface of panel during test.
- Note (2) Temperature of panel display surface area should be 90 °C Max
- Note (3)At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic Specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.
- Note (6) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Version 2.0 16 Oct 2019 23/29

7. PACKAGING

7.1 PACKING SPECIFICATIONS

- (1) 20pcs LCD modules / 1 Box
- (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm
- (3) Weight: approximately 17Kg (20 modules per box)

7.2 PACKING METHOD

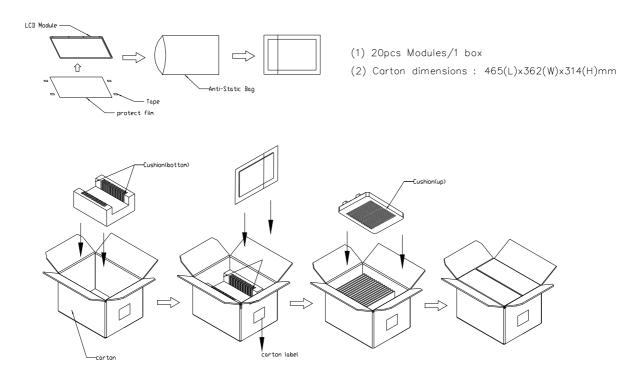
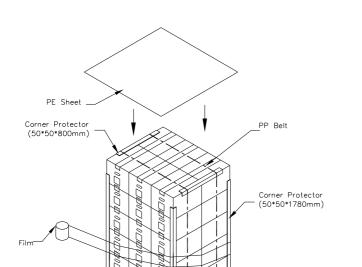



Figure. 7-1 Packing

Version 2.0 16 Oct 2019 24/29

-Carton Label

Sea / Land Transportation (40ft Container)

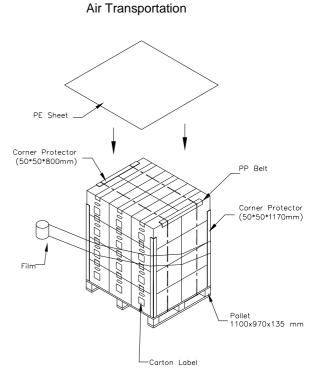


Figure. 7-2 Packing

Pallet 1100x970x135 mm

Version 2.0 16 Oct 2019 25/29

7.3 UN-PACKING METHOD

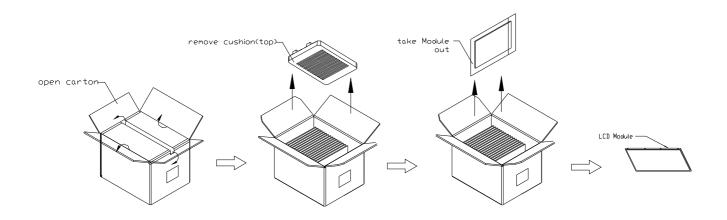
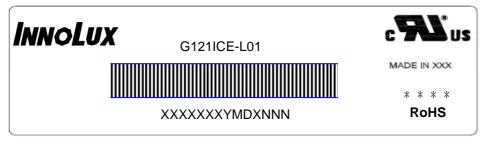


Figure. 7-3 UN-Packing

Version 2.0 16 Oct 2019 26/29



8. MODULE LABEL

8.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

8.1 SN Label Definition

INX Barcode Definition

(a) Model Name: G121ICE-L01

(b)Revision: Rev. XX, for example: A1, B1, C1, C2 ...etc.

(c)* * * * : Factory ID

"LEOO" for Ningbo NA

"VIRO" for Ningbo NB,NC

"COCKN" for Ningbo ND

"GEMN" for Tainan LCM1,LCM4

(d)Serial ID: XX-XX-X-XX-YMD-X-NNNN

Code	Meaning	Description
XX	INX internal use	Model Code
XX	Revision	Cover all the change
X	INX internal use	Fab ID
XX	INX internal use	Dash Code
YMD	Year, month, day	Year: 2011=1, 2012=2, 2013=3, 2014=4 Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U.
Χ	INX internal use	Grade Code
NNNN	Serial number	Manufacturing sequence of product

Version 2.0 16 Oct 2019 27/29

INNOLUX 群創光電

PRODUCT SPECIFICATION

9. PRECAUTIONS

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

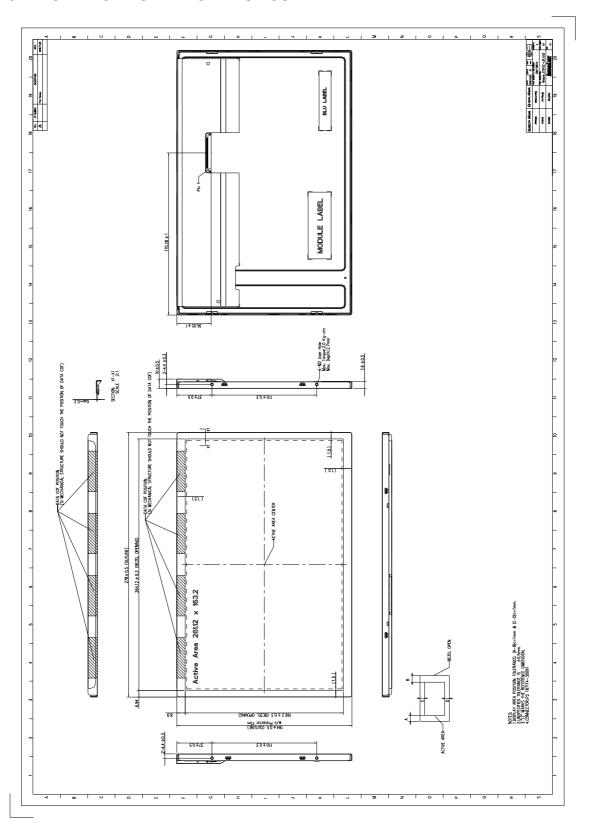
- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

9.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

9.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.


9.4 OTHER PRECAUTIONS

(1) When fixed patterns are displayed for a long time, remnant image is likely to occur.

Version 2.0 16 Oct 2019 28/29

10. MECHANICAL CHARACTERISTICS

Version 2.0 16 Oct 2019 29/29

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894450-0
E-Mail: info@fortecag.de
Internet: www.fortecag.de

Fortec Group Members

Distec GmbH Office Vienna

Nuschinggasse 12 1230 Wien

Phone: +43 1 8673492-0
E-Mail: info@distec.de
Internet: www.distec.de

Germany

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894363-0
E-Mail: info@distec.de
www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: +41 44 7446111
E-Mail: info@altrac.ch
Internet: www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: info@displaytechnology.co.uk
Internet: www.displaytechnology.co.uk

USA

Apollo Display Technologies, Corp.

87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

 Phone:
 +1 631 5804360

 E-Mail:
 info@apollodisplays.com

 Internet:
 www.apollodisplays.com