

Datasheet

InnoLux

G070ACE-LH3

CH-01-072

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: G070ACE SUFFIX: LH3

Customer:	
APPROVED BY	SIGNATURE
<u>Name / Title</u> Note	
Please return 1 copy for you signature and comments.	ur confirmation with your

Approved By	Checked By	Prepared By
陳立錚	林秋森	潘方傑

CONTENTS

1. GENERAL DESCRIPTION		5
1.1 OVERVIEW		5
1.2 FEATURE		5
1.3 APPLICATION		5
1.4 GENERAL SPECIFICATI	0NS	5
1.5 MECHANICAL SPECIFIC	CATIONS	
2. ABSOLUTE MAXIMUM RAT	INGS	7
2.1 ABSOLUTE RATINGS O	F ENVIRONMENT	7
2.2 ELECTRICAL ABSOLUT	E RATINGS	
2.2.2 BACKLIGHT UNIT		
3. ELECTRICAL CHARACTER	ISTICS	9
3.1 TFT LCD MODULE		
4. BLOCK DIAGRAM		
4.1 TFT LCD MODULE		
5. INPUT TERMINAL PIN ASS	GNMENT	
6.1 INPUT SIGNAL TIMING	SPECIFICATIONS	
6.2 POWER ON/OFF SEQU	ENCE	
6.3 SCANNING DIRECTION		
7.1 TEST CONDITIONS		21
7.2 OPTICAL SPECIFICATIO)NS	21
8. RELIABILITY TEST CRITER	lA	
9. PACKAGING		
9.1 PACKING SPECIFICATIO	ONS	
9.2 PACKING METHOD		
9.3 UN-PACKING METHOD		
10. DEFINITION OF LABELS		
10.1 INX MODULE LABEL		
11. PRECAUTIONS		
11.2 STORAGE PRECAUTIO)NS	
12 MECHANICAL CHARACTE	RISTICS	
Version 1.0	28 July 2022	2 / 41

PRODUCT SPECIFICATION

Appendix .	SYSTEM	COVER DESIGN	NOTICE		
------------	--------	--------------	--------	--	--

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

REVISION HISTORY

Version	Date	Page	Description
Ver 1.0	28 Jul, 2022	All	Preliminary Specification was first issued.

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G070ACE-LH3 is a 7" TFT Liquid Crystal Display module with WLED Backlight unit and 30 pins 1ch-LVDS interface. This module supports 800xRGBx480 AAS mode and can display 262k or 16.7M colors.

The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 7" WVGA LCD panel and the LED driving device for Backlight is built in PCBA.

1.2 FEATURE

- WVGA (800 x 480 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- PSWG (Panel Standardization Working Group)
- Wide operating temperature.
- RoHS compliance

1.3 APPLICATION

- -TFT LCD Monitor
- Factory Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	152.4 (H) x 91.44 (V) (7" diagonal)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	800 x R.G.B. x 480	pixel	-
Pixel Pitch	0.1905 (H) x 0.1905 (V)	mm	-
Pixel Arrangement	RGB vertical Stripe	-	-
Display Colors	16.7M / 262K	color	-
Display Mode	Normally Black	-	-
Surface Treatment	Hard Coating (3H), Anti-Glare	-	-
Module Power Consumption	Total 2.55 W @ cell 0.45 W, BL 2.1 W	W	Тур.

1.5 MECHANICAL SPECIFICATIONS

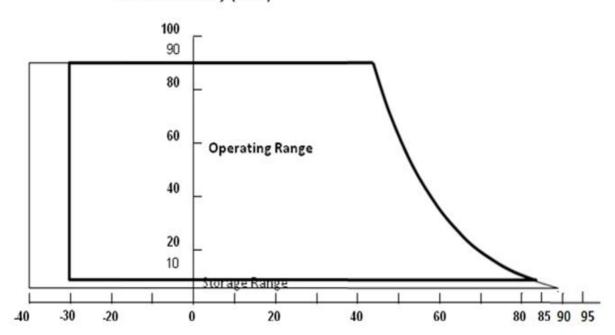
lte	Item		Тур.	Max.	Unit	Note
	Horizontal (H)	164.5	165	165.5	mm	
Module Size	Vertical (V)	103.5	104	104.5	mm	(1)
	Thickness (T)	8.13	8.63	9.13	mm	
Bezel Area	Horizontal	154.3	154.60	154.9	mm	
Dezel Alea	Vertical	93.34	93.64	93.94	mm	
Active Area	Horizontal	-	152.4	-	mm	
Active Area	Vertical	-	91.44	-	mm	
We	ight		152		g	

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Value		Unit	Note
nem	Symbol	Min.	Max.	Unit	NOLE
Storage Temperature	Tst	-40	90	°C	(1)(2)
Operating Ambient Temperature	Тор	-30	85	°C	(1)(2)


Note (1)

(a) 90 %RH Max.

(b) Wet-bulb temperature should be 39 °C Max.

(c) No condensation.

Note (2) Panel surface temperature should be 0°C min. and 65°C max under Vcc=5.0V, fr =60Hz, typical LED string current, 25°C ambient temperature, and no humidity control. Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 85°C.

Relative Humidity (%RH)

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

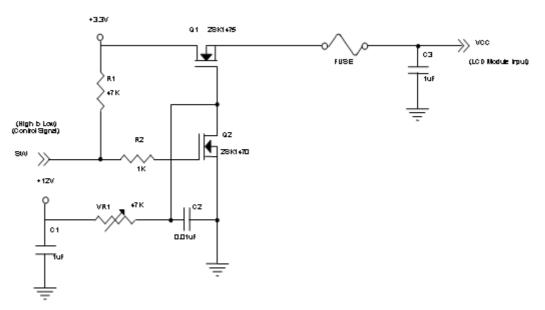
Item	Symbol	Value		Unit	Note
пеш	Symbol	Min.	Max.	Onic	NOLE
Power Supply Voltage	Vcc	-0.3	3.6	V	(1)
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)

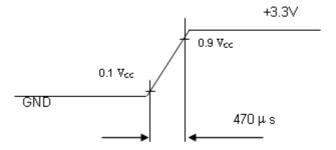
2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note
item	Symbol	Min.	Max.	Unit	NOLE
Converter Voltage	Vi	0	18.0	V	(1) , (2)
Enable Voltage	EN		7	V	
Backlight Adjust	Dimming		7	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).

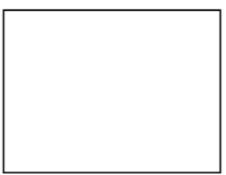

3. ELECTRICAL CHARACTERISTICS


3.1 TFT LCD MODULE

Parameter		Symbol		Value		Unit	Note
Falancici		Symbol	Min.	Тур.	Max.	Unit	NOLE
Power Supply Vo	Itage	Vcc	3.0	3.3	3.6	V	-
Ripple Voltag	е	V _{RP}	-	-	100	mVp-p	-
Rush Current	t	I _{RUSH}	-	-	2	А	(2)
Dowor Supply Current	White	lcc	-	135	200	mA	(3)a
Power Supply Current	Black		-	85	135	mA	(3)b
LVDS differential input	it voltage	Vid	200	-	600	mV	
LVDS common input	voltage	Vic	1.0	1.2	1.4	V	
Differential Input Voltage for	"H" Level	V _{TH}	-	-	+100	mV	-
LVDS Receiver Threshold	"L" Level	V _{TL}	-100	-	-	mV	-
	"H" Level	V _{IH}	2.6	-	Vcc	V	
Logic Input Voltage	"L" Level	V _{IL}	0	-	0.7	V	
Terminating Res	istor	R _T	-	100	-	Ohm	-

Note (1)The module should be always operated within above ranges.

Note (2)Measurement Conditions:


The copyright belongs to InnoLux. Any unauthorized use is prohibited.

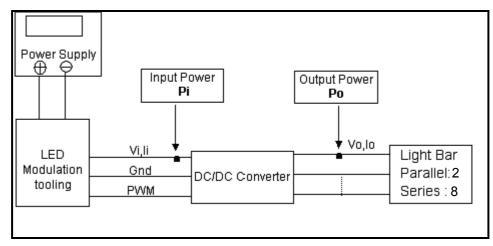
Note (3) The specified power supply current is under the conditions at V_{CC} =3.3V, Ta = 25 \pm 2 $^{\circ}$ C, DC Current

and f_{ν} = 60 Hz, whereas a power dissipation check pattern below is displayed.

a. White Pattern

Active Area

b. Black Pattern


Active Area

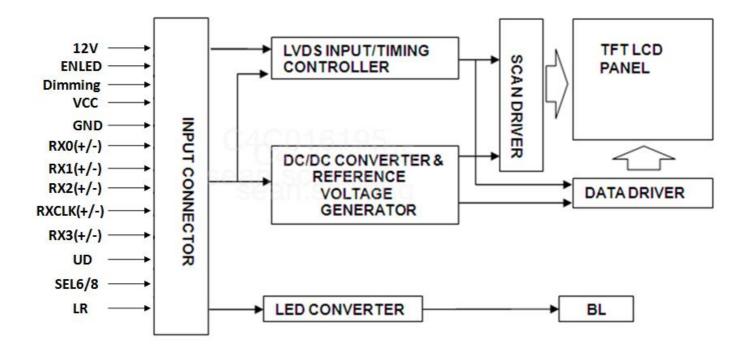
3.2 BACKLIGHT UNIT

Parameter		Symbol		Value		Unit	Note
1 didine	Symbol	Min.	Тур.	Max.	Onit	NOLE	
Converter Power S	Supply Voltage	LED_Vin	10.8	12.0	13.2	V	
Converter Input F	Ripple Voltage	V _{iRP}	-	-	500	mV	
Converter Power S	Supply Current	li	0.15	0.17	0.2	А	@LED_Vin= 12V Duty=100%
Converter Input I	Rush Current	lirsh			3	А	@LED_Vin rising = 1mS(Vi=12V)
Input Power Co	onsumption	Pi	-	2.1	2.5	W	(1)
EN Control Level	Backlight on	ENLED	2.0	3.3	5.0	V	
EN CONTO LEVE	Backlight off	(BLON)	0	-	0.3	V	
PWM Control Level	PWM High Level	Dimming	2.0		5.0	V	
	PWM Low Level	(E_PWM)	0		0.15	V	
PWN Noise	Range	VNoise	-	-	0.1	V	
PWM Control	Frequency	f _{PWM}	190	200	20K	Hz	(3)
		5	-	100	%	(3), @ 190Hz <f<sub>PWM<1kHz</f<sub>	
PWM Dimming Co	nii oi Duly Ralio	-	20	-	100	%	(3), @ 1kHz≦f _{PWM} <20kHz
LED Life	Time	L_{LED}	50,000		-	Hrs	(2)

Note (1)LED current is measured by utilizing a high frequency current meter as shown below:

- Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift.
- Note (3) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%.

1K ~20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%.


If PWM control frequency is applied in the range from 1KHz to 20KHZ, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a **suggestion** that PWM control frequency should be **less than 1KHz**.

PRODUCT SPECIFICATION

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

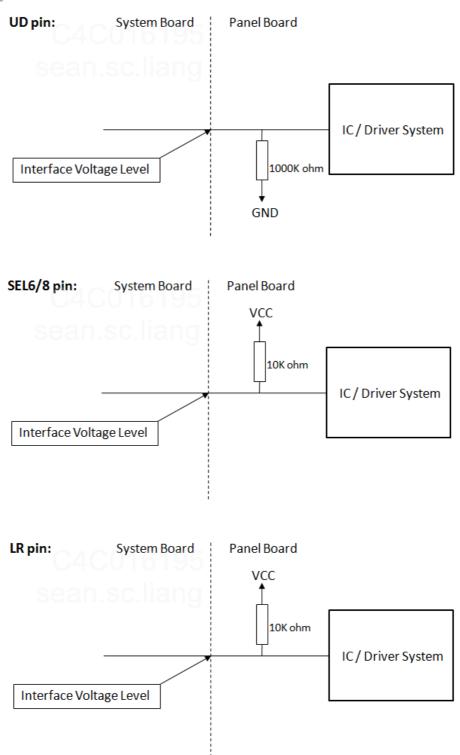
5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

112VLED power-212VLED power-312VLED power-412VLED power-5ENLEDEnable pin-6DimmingBacklight Adjust-7NCNo Conncetion (Reserve for INX test)(4)8NCNo Conncetion (Reserve for INX test)(4)9VCCPower supply: +3.3V-10VCCPower supply: +3.3V-11GNDGround-12GNDGround-13RX0-Negative transmission data of pixel 0Negative14RX0+Positive transmission data of pixel 0Positive15GNDGround-16RX1-Negative transmission data of pixel 1Positive18GNDGround-20RX2+Positive transmission data of pixel 2Positive21GNDGround-22RXCLK-Negative of clockPositive23RXCLK+Negative of clockPositive24GNDGround-25RX3-Negative transmission data of pixel 3Negative26RX3+Positive transmission data of pixel 3Positive27UDWhen UD=L, normal scan(3)28SEL6/8Low > 6 bit Input Mode(3)29LRWhen LR=L, normal scan(3)30GNDGround- <th>Pin No.</th> <th>Symbol</th> <th>Function</th> <th>Polarity</th> <th>Note</th>	Pin No.	Symbol	Function	Polarity	Note
312VLED power-412VLED power-5ENLEDEnable pin-6DimmingBacklight Adjust-7NCNo Conncetion (Reserve for INX test)(4)8NCNo Conncetion (Reserve for INX test)(4)9VCCPower supply: $+3.3V$ -10VCCPower supply: $+3.3V$ -11GNDGround-12GNDGround-13RX0-Negative transmission data of pixel 0Positive14RX0+Positive transmission data of pixel 0Positive15GNDGround-16RX1-Negative transmission data of pixel 1Negative18GNDGround-19RX2-Negative transmission data of pixel 2Negative20RX2+Positive transmission data of pixel 2Negative21GNDGround-22RXCLK+Negative of clockNegative23RXCLK+Negative of clockNegative24GNDGround-25RX3-Negative transmission data of pixel 3Negative26RX3+Positive transmission data of pixel 3Positive26RX3+Positive transmission data of pixel 3Positive27UDWhen UD=L, normal scan(3)28SEL6/8Low → 6 bit Input Mode(3)29LRSource Driver Right/	1		LED power		-
412VLED power-5ENLEDEnable pin-6DimmingBacklight Adjust-7NCNo Conncetion (Reserve for INX test)(4)8NCNo Conncetion (Reserve for INX test)(4)9VCCPower supply: +3.3V-10VCCPower supply: +3.3V-11GNDGround-12GNDGround-13RX0-Negative transmission data of pixel 0Negative14RX0+Positive transmission data of pixel 0Positive15GNDGround-16RX1-Negative transmission data of pixel 1Negative18GNDGround-19RX2-Negative transmission data of pixel 2Negative20RX2+Positive transmission data of pixel 2Negative21GNDGround-22RXCLK-Negative of clockNegative23RXCLK+Positive of clockNegative24GNDGround-25RX3-Negative transmission data of pixel 3Positive26RX3+Positive transmission data of pixel 3Positive26RX3+Positive transmission data of pixel 3Positive26RX3+Positive transmission data of pixel 3Positive27UDWhen UD=L, normal scan(3)28SEL6/8Low → 6 bit Input Mode(3)29 <td< td=""><td>2</td><td>12V</td><td>LED power</td><td></td><td>-</td></td<>	2	12V	LED power		-
5ENLEDEnable pin-6DimmingBacklight Adjust-7NCNo Conncetion (Reserve for INX test)(4)8NCNo Conncetion (Reserve for INX test)(4)9VCCPower supply: $+3.3V$ -10VCCPower supply: $+3.3V$ -11GNDGround-12GNDGround-13RX0-Negative transmission data of pixel 0Negative14RX0+Positive transmission data of pixel 0Positive15GNDGround-16RX1-Negative transmission data of pixel 1Negative17RX1+Positive transmission data of pixel 1Positive18GNDGround-19RX2-Negative transmission data of pixel 2Negative20RX2+Positive transmission data of pixel 2Positive21GNDGround-22RXCLK-Negative of clockNegative23RXCLK+Positive folcokPositive24GNDGround-25RX3+Positive transmission data of pixel 3Positive26RX3+Positive transmission data of pixel 3Positive27UDWhen UD=H, reverse scan(3)28SEL6/8Low → 6 bit Input Mode(3)29LRWhen LR=H, normal scan(3)	3	12V	LED power		-
6DimmingBacklight Adjust-7NCNo Conncetion (Reserve for INX test)(4)8NCNo Conncetion (Reserve for INX test)(4)9VCCPower supply: $\pm 3.3V$ -10VCCPower supply: $\pm 3.3V$ -11GNDGround-12GNDGround-13RX0-Negative transmission data of pixel 0Negative14RX0+Positive transmission data of pixel 0Positive15GNDGround-16RX1-Negative transmission data of pixel 1Negative18GNDGround-19RX2-Negative transmission data of pixel 2Positive20RX2+Positive transmission data of pixel 2Negative21GNDGround-22RXCLK-Negative of clockNegative23RXCLK+Positive of clockPositive24GNDGround-25RX3-Negative transmission data of pixel 3Negative26RX3+Positive fransmission data of pixel 3Negative27UDWhen UD=H, reverse scan When UD=H, reverse scan When UD=L, normal scan(3)28SEL6/8Low $\rightarrow 6$ bit Input Mode(3)29LRWhen LR=H, normal scan When LR=H, normal scan(3)	4	12V	LED power		-
7NCNo Conncetion (Reserve for INX test)(4)8NCNo Conncetion (Reserve for INX test)(4)9VCCPower supply: $+3.3V$ -10VCCPower supply: $+3.3V$ -11GNDGround-12GNDGround-13RX0-Negative transmission data of pixel 0Negative14RX0+Positive transmission data of pixel 0Positive15GNDGround-16RX1-Negative transmission data of pixel 1Negative17RX1+Positive transmission data of pixel 1Positive19RX2-Negative transmission data of pixel 2Negative20RX2+Positive transmission data of pixel 2Positive21GNDGround-22RXCLK-Negative of clockNegative23RXCLK+Positive of clockPositive24GNDGround-25RX3+Positive transmission data of pixel 3Negative26RX3+Positive transmission data of pixel 3Negative27UDWhen UD=H, reverse scan When UD=L, normal scan(3)28SEL6/8Low \rightarrow 6 bit Input Mode(3)29LRWhen LR=H, normal scan(3)	5	ENLED	Enable pin		-
8NCNo Conncetion (Reserve for INX test)(4)9VCCPower supply: $+3.3V$ -10VCCPower supply: $+3.3V$ -11GNDGround-12GNDGround-13RX0-Negative transmission data of pixel 0Negative14RX0+Positive transmission data of pixel 0Positive15GNDGround-16RX1-Negative transmission data of pixel 1Negative17RX1+Positive transmission data of pixel 1Positive18GNDGround-19RX2-Negative transmission data of pixel 2Negative20RX2+Positive transmission data of pixel 2Negative21GNDGround-22RXCLK-Negative of clockNegative23RXCLK+Positive of clockPositive24GNDGround-25RX3-Negative transmission data of pixel 3Negative26RX3+Positive transmission data of pixel 3Positive27UDWhen UD=H, reverse scan When UD=L, normal scan(3)28SEL6/8Low \rightarrow 6 bit Input Mode High or NC \rightarrow 8 bit Input Mode(3)29LRWhen LR=L, reverse scan When LR=L, reverse scan(3)	6	Dimming	Backlight Adjust		-
9VCCPower supply: $+3.3V$ -10VCCPower supply: $+3.3V$ -11GNDGround-12GNDGround-13RXO-Negative transmission data of pixel 0Negative14RXO+Positive transmission data of pixel 0Positive15GNDGround-16RX1-Negative transmission data of pixel 1Positive17RX1+Positive transmission data of pixel 1Positive18GNDGround-19RX2-Negative transmission data of pixel 2Negative20RX2+Positive transmission data of pixel 2Negative21GNDGround-22RXCLK-Negative of clockNegative23RXCLK+Positive of clockNegative24GNDGround-25RX3-Negative transmission data of pixel 3Positive26RX3+Positive transmission data of pixel 3Positive27UDWhen UD=H, reverse scan(3)When UD=L, normal scan(3)When UD=L, normal scan(3)28SEL6/8Low \rightarrow 6 bit Input Mode(3)29LRWhen LR=H, normal scan(3)	7	NC	No Conncetion (Reserve for INX test)		(4)
10VCCPower supply: +3.3V-11GNDGround-12GNDGround-13RX0-Negative transmission data of pixel 0Negative14RX0+Positive transmission data of pixel 0Positive15GNDGround-16RX1-Negative transmission data of pixel 1Negative17RX1+Positive transmission data of pixel 1Positive18GNDGround-19RX2-Negative transmission data of pixel 2Positive20RX2+Positive transmission data of pixel 2Positive21GNDGround-22RXCLK-Negative of clockNegative23RXCLK-Negative of clockPositive24GNDGround-25RX3-Negative transmission data of pixel 3Negative26RX3+Positive transmission data of pixel 3Positive27UDWhen UD=H, reverse scan(3)28SEL6/8Low → 6 bit lnput Mode(3)29LRWhen LR=H, normal scan(3)	8		No Conncetion (Reserve for INX test)		(4)
11GNDGround-12GNDGround-13RX0-Negative transmission data of pixel 0Negative-14RX0+Positive transmission data of pixel 0Positive-15GNDGround16RX1-Negative transmission data of pixel 1Negative-17RX1+Positive transmission data of pixel 1Positive-18GNDGround19RX2-Negative transmission data of pixel 2Negative-20RX2+Positive transmission data of pixel 2Positive-21GNDGround22RXCLK-Negative of clockNegative-23RXCLK+Positive of clockPositive-24GNDGround25RX3-Negative transmission data of pixel 3Negative-26RX3+Positive transmission data of pixel 3Positive-27UDWhen UD=H, reverse scan(3)(3)28SEL6/8Low \rightarrow 6 bit Input Mode(3)-29LRWhen LR=H, normal scan(3)	9	VCC	Power supply: +3.3V		-
12GNDGround-13RX0-Negative transmission data of pixel 0Negative-14RX0+Positive transmission data of pixel 0Positive-15GNDGround16RX1-Negative transmission data of pixel 1Negative-17RX1+Positive transmission data of pixel 1Positive-18GNDGround19RX2-Negative transmission data of pixel 2Negative-20RX2+Positive transmission data of pixel 2Positive-21GNDGround22RXCLK-Negative of clockNegative-23RXCLK+Positive of clockPositive-24GNDGround25RX3-Negative transmission data of pixel 3Positive-26RX3+Positive transmission data of pixel 3Positive-27UDWhen UD=H, reverse scan High or NC \rightarrow 8bit Input Mode(3)28SEL6/8Low \rightarrow 6 bit Input Mode(3)29LRWhen LR=H, normal scan(3)	10	VCC	Power supply: +3.3V		-
13RX0-Negative transmission data of pixel 0Negative-14RX0+Positive transmission data of pixel 0Positive-15GNDGround-16RX1-Negative transmission data of pixel 1Negative17RX1+Positive transmission data of pixel 1Positive18GNDGround-19RX2-Negative transmission data of pixel 2Negative20RX2+Positive transmission data of pixel 2Positive21GNDGround-22RXCLK-Negative of clockNegative23RXCLK+Positive of clockPositive24GNDGround-25RX3-Negative transmission data of pixel 3Negative26RX3+Positive transmission data of pixel 3Negative27UDWhen UD=H, reverse scan When UD=L, normal scan(3)28SEL6/8Low → 6 bit Input Mode High or NC → 8bit Input Mode(3)29LRWhen LR=H, normal scan When LR=L, reverse scan(3)	11	GND	Ground		-
14RX0+Positive transmission data of pixel 0Positive-15GNDGround-16RX1-Negative transmission data of pixel 1Negative-17RX1+Positive transmission data of pixel 1Positive-18GNDGround19RX2-Negative transmission data of pixel 2Negative-20RX2+Positive transmission data of pixel 2Positive-21GNDGround22RXCLK-Negative of clockNegative-23RXCLK+Positive of clockPositive-24GNDGround25RX3-Negative transmission data of pixel 3Negative-26RX3+Positive transmission data of pixel 3Positive-27UDWhen UD=H, reverse scan High or NC \rightarrow 8bit Input Mode(3)28SEL6/8Low \rightarrow 6 bit Input Mode(3)29LRWhen LR=H, normal scan When LR=L, reverse scan(3)	12	GND	Ground		-
15GNDGround-16RX1-Negative transmission data of pixel 1Negative-17RX1+Positive transmission data of pixel 1Positive-18GNDGround19RX2-Negative transmission data of pixel 2Negative-20RX2+Positive transmission data of pixel 2Positive-21GNDGround22RXCLK-Negative of clockNegative-23RXCLK+Positive of clockPositive-24GNDGround25RX3-Negative transmission data of pixel 3Negative-26RX3+Positive transmission data of pixel 3Positive-27UDWhen UD=H, reverse scan UP/Down scan control.(3)28SEL6/8Low \rightarrow 6 bit Input Mode High or NC \rightarrow 8bit Input Mode(3)29LRWhen LR=H, normal scan When LR=L, reverse scan(3)	13	RX0-	Negative transmission data of pixel 0	Negative	-
16RX1-Negative transmission data of pixel 1Negative-17RX1+Positive transmission data of pixel 1Positive-18GNDGround-19RX2-Negative transmission data of pixel 2Negative20RX2+Positive transmission data of pixel 2Positive21GNDGround-22RXCLK-Negative of clockNegative23RXCLK+Positive of clockPositive24GNDGround-25RX3-Negative transmission data of pixel 3Negative26RX3+Positive transmission data of pixel 3Positive27UDWhen UD=H, reverse scan(3)28SEL6/8Low → 6 bit Input Mode(3)29LRWhen LR=H, normal scan(3)		RX0+	Positive transmission data of pixel 0	Positive	-
17RX1+Positive transmission data of pixel 1Positive-18GNDGround19RX2-Negative transmission data of pixel 2Negative-20RX2+Positive transmission data of pixel 2Positive-21GNDGround22RXCLK-Negative of clockNegative-23RXCLK+Positive of clockPositive-24GNDGround25RX3-Negative transmission data of pixel 3Negative-26RX3+Positive transmission data of pixel 3Positive-27UDWhen UD=H, reverse scan When UD=L, normal scan(3)28SEL6/8Low \rightarrow 6 bit Input Mode High or NC \rightarrow 8bit Input Mode(3)29LRWhen LR=H, normal scan When LR=L, reverse scan(3)	15	GND	Ground		-
18GNDGround-19RX2-Negative transmission data of pixel 2Negative-20RX2+Positive transmission data of pixel 2Positive-21GNDGround22RXCLK-Negative of clockNegative-23RXCLK+Positive of clockPositive-24GNDGround25RX3-Negative transmission data of pixel 3Negative-26RX3+Positive transmission data of pixel 3Positive-27UDWhen UD=H, reverse scan(3)(3)28SEL6/8Low \rightarrow 6 bit Input Mode(3)(3)29LRSource Driver Right/ Left scan control. When LR=H, normal scan(3)	16	RX1-	Negative transmission data of pixel 1	Negative	-
19RX2-Negative transmission data of pixel 2Negative-20RX2+Positive transmission data of pixel 2Positive-21GNDGround-22RXCLK-Negative of clockNegative-23RXCLK+Positive of clockPositive-24GNDGround25RX3-Negative transmission data of pixel 3Negative-26RX3+Positive transmission data of pixel 3Positive-27UDWhen UD=H, reverse scan When UD=L, normal scan(3)28SEL6/8LvDS 6/8 bit select function control, High or NC \rightarrow 8bit Input Mode(3)29LRWhen LR=H, normal scan When LR=L, reverse scan(3)	17	RX1+	Positive transmission data of pixel 1	Positive	-
20RX2+Positive transmission data of pixel 2Positive-21GNDGround-22RXCLK-Negative of clockNegative-23RXCLK+Positive of clockPositive-24GNDGround25RX3-Negative transmission data of pixel 3Negative-26RX3+Positive transmission data of pixel 3Positive-27UDWhen UD=H, reverse scan When UD=L, normal scan(3)28SEL6/8Low → 6 bit Input Mode High or NC → 8bit Input Mode(3)29LRWhen LR=H, normal scan When LR=L, reverse scan(3)	18	GND	Ground		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19	RX2-	Negative transmission data of pixel 2	Negative	-
22RXCLK-Negative of clockNegative-23RXCLK+Positive of clockPositive-24GNDGround-25RX3-Negative transmission data of pixel 3Negative26RX3+Positive transmission data of pixel 3Positive26RX3+Positive transmission data of pixel 3Positive27UDGate Driver Up/Down scan control27UDWhen UD=H, reverse scan(3)28SEL6/8Low \rightarrow 6 bit Input Mode(3)29LRSource Driver Right/ Left scan control.(3)	20	RX2+	Positive transmission data of pixel 2	Positive	-
23RXCLK+Positive of clockPositive-24GNDGround-25RX3-Negative transmission data of pixel 3Negative26RX3+Positive transmission data of pixel 3Positive26RX3+Positive transmission data of pixel 3Positive27UDGate Driver Up/Down scan control27UDWhen UD=H, reverse scan(3)28SEL6/8Low \rightarrow 6 bit Input Mode(3)29LRSource Driver Right/ Left scan control.(3)29LRWhen LR=H, normal scan(3)	21	GND	Ground		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Negative	-
25RX3-Negative transmission data of pixel 3Negative-26RX3+Positive transmission data of pixel 3Positive-27UDGate Driver Up/Down scan control. When UD=H, reverse scan When UD=L, normal scan(3)28SEL6/8LVDS 6/8 bit select function control, High or NC → 8bit Input Mode(3)29LRSource Driver Right/ Left scan control. When LR=H, normal scan(3)		RXCLK+	Positive of clock	Positive	-
26RX3+Positive transmission data of pixel 3Positive27UDGate Driver Up/Down scan control.(3)27UDWhen UD=H, reverse scan(3)28SEL6/8LVDS 6/8 bit select function control, High or NC \rightarrow 8bit Input Mode(3)29LRSource Driver Right/ Left scan control. When LR=H, normal scan(3)	24	GND	Ground		-
27UDGate Driver Up/Down scan control. When UD=H, reverse scan When UD=L, normal scan(3)28SEL6/8LVDS 6/8 bit select function control, High or NC \rightarrow 6 bit Input Mode High or NC \rightarrow 8bit Input Mode(3)29LRSource Driver Right/ Left scan control. When LR=H, normal scan(3)			Negative transmission data of pixel 3		-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	26	RX3+		Positive	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27	UD	When UD=H, reverse scan		(3)
29 LR Source Driver Right/ Left scan control. 29 LR When LR=H, normal scan When LR=L, reverse scan (3)	28	SEL6/8	LVDS 6/8 bit select function control, Low \rightarrow 6 bit Input Mode		(3)
30 GND Ground		LR	Source Driver Right/ Left scan control. When LR=H, normal scan		(3)
	30	GND	Ground		

Note (1) Connector Part No.: Starconn 093G30-B0001A-G4.

Note (2) User's connector Part No:


Mating Wire Cable Connector Part No. :FI-X30H (JAE) or FI-X30HL (JAE)

Note (3) "Low" stands for 0V. "High" stands for 3.3V

Note (4) Pin7, Pin8 input signals should be set to no connection or ground, this module

INNOLUX 群創光電

PRODUCT SPECIFICATION

28 July 2022

5.2 COLOR DATA INPUT ASSIGNMENT

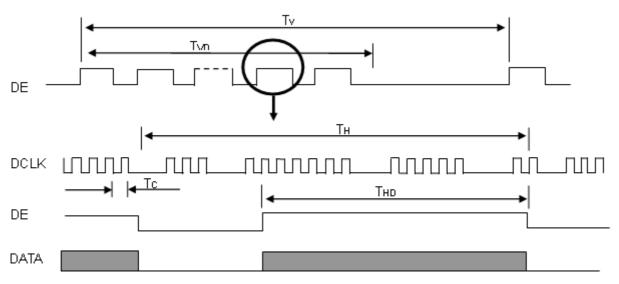
The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D		Sig	nal										
	Color				R									een								ue			-
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2		G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_ .	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale		:	:	:	•	:	-	÷	:	:	:	:	:		÷	:	÷	÷	•	÷	:		:	-	
Of	Red(253)	1	1	: 1	: 1	1	: 1	:	: 1	:	-	:	•	:	: 0	-	:	:	:	:	: 0	•	:	•	:
Red	Red(253) Red(254)	1	1 1	1	1 1	1 1	1	0 1	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0	0 0
	Red(254) Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	、 <i>,</i>										_		-			-	-	-		-			_		_
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale		÷	÷	·	·	÷	-	•	•	•	÷	÷	•	•	•		·	•	•	•	•		•	•	-
Of	Green(253)				:		: 0		•	1	•	1	1	· 1			1		:					0	
Green	Green(253) Green(254)	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	1	1 1	1	1	1	1	0 1	0	0 0	0 0	0 0	0 0	0	0 0	0	0 0
	Green(254) Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
-	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Gray	· Diue(2)			•																					
Scale		:	:	:	:	:	:		:	:	:	:	:	:		:	:	:	:	:	:	:	:		
Of	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	.1	0	1
Blue	Blue(254)	0	0	0	0	0	0	Ő	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	Ő	0	0	0	1	1	1	1	1	1	1	1
L	2.00(200)	Ŭ	v	Ÿ	v	v	Ŭ	Ŭ	v	v	Ŭ	Ŭ	v	v	Ŭ	Ŭ	v		· ·						•

Note (1)0: Low Level Voltage, 1: High Level Voltage

6. INTERFACE TIMING

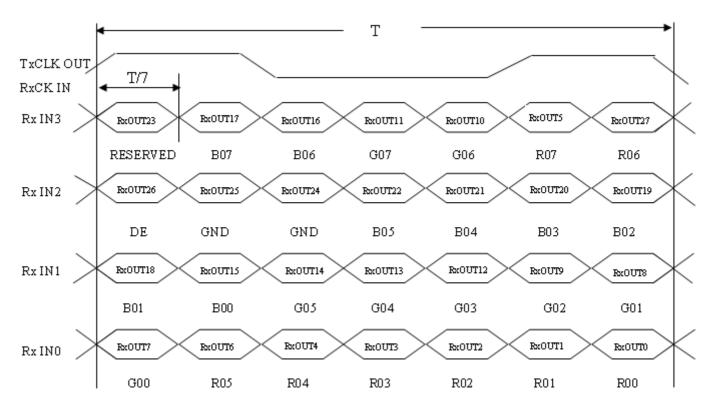
6.1 INPUT SIGNAL TIMING SPECIFICATIONS

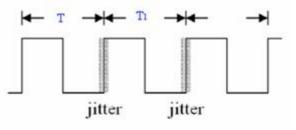

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	25.2	25.4	35.7	MHz	-
	Period	Тс		39.37		ns	
	Input cycle to cycle jitter	T _{rcl}	-0.02*Tc	-	0.02*Tc	ns	(a)
LVDS Clock	Input Clock to data skew	TLVCCS	-0.02*Tc	-	0.02*Tc	ps	(b)
	Spread spectrum modulation range	F _{clkin_mod}	-	-	1.02*F _c	MHz	
	Spread spectrum modulation frequency	F_{SSM}	23	-	93	KHz	(c)
	Frame Rate	Fr	-	60	-	Hz	-
Vertical Display	Total	Τ _v	488	490	611	T _h	$Tv=T_{vd}+T_{vb}$
Term	Active Display	T _{vd}	480	480	480	T _h	-
	Blank	T _{vb}	8	10	131	T _h	-
	Total	T _h	860	864	974	Tc	$T_h = T_{hd} + T_{hb}$
Horizontal Display Term	Active Display	T _{hd}	800	800	800	Tc	-
10mm	Blank	T _{hb}	60	64	174	T _c	-

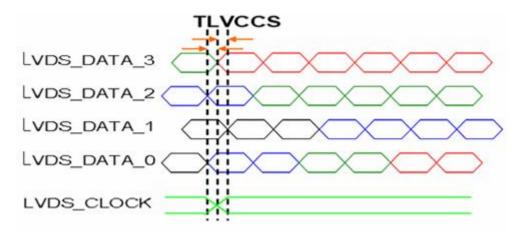
Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.

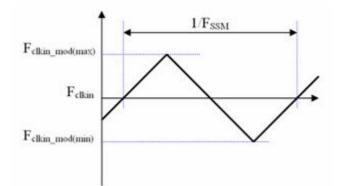

INPUT SIGNAL TIMING DIAGRAM



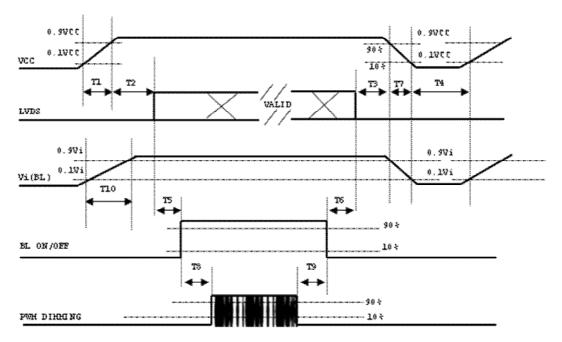
PRODUCT SPECIFICATION


TIMING DIAGRAM of LVDS

Note (a) The input clock cycle-to-cycle jitter is defined as below figures. $T_{rcl} = I T1 - TI$



Note (b) Input Clock to data skew is defined as below figures.



Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Deremeter			Units	
Parameter	Min	Тур	Max	Min
T1	0.5	-	10	ms
Τ2	0	-	50	ms
Т3	0	-	50	ms
T4	500	-	-	ms
Τ5	450	-	-	ms
Т6	200	-	-	ms
T7	10	_	100	ms

Version 1.0

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

PRODUCT SPECIFICATION

1 -					
	Т8	10	-	-	ms
	Т9	10	-	-	ms
	T10	20	-	50	ms

Note

- (1)The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- (2)When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- (3)In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- (4)T4 should be measured after the module has been fully discharged between power off and on period.
- (5)Interface signal shall not be kept at high impedance when the power is on.
- (6)INX won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- (7)There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "T7 spec".

6.3 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

PCBA on the bottom side

Fig.2 Reverse Scan

PCBA on the bottom side

Fig. 1 Normal scan (pin 27, UD = Low, pin 29 LR = High)

Fig. 2 Reverse scan (pin 27, UD = High, pin 29 LR = Low)

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

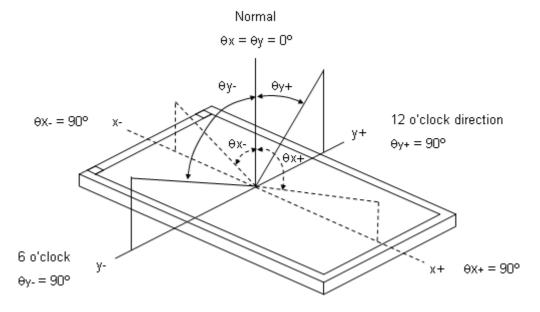
Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	oC
Ambient Humidity	На	50±10	%RH
Supply Voltage	Accordir	ig to typical value and tole	erance in
Input Signal	"ELE	CTRICAL CHARACTERIS	STICS"
PWM Duty Ratio	D	100	%

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5).

Iten	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			0.590			
	Reu	Ry			0.330			
	Green	Gx			0.334			
Color	Green	Gy		Тур –	0.600	Typ +		(1) (5)
Chromaticity	Blue	Bx	θ X=0 °, θ Y =0 °	0.05	0.150	0.05	-	(1), (5)
	Diue	Ву	Grayscale Maximum		0.054			
	White	Wx			0.313			
	VVIIILE	Wy			0.329			
Center Lumina	nce of White	LC		400	500		cd/m ²	(4), (5)
Contrast	Ratio	CR		600	800			(2), (5)
Respons	e Time	TR	θ X=0° , θ Y =0 °	-	13	18	ms	(3)
Respons	e IIIIe	TF	$\theta = 0$, $\theta = 0$	-	12	17	1115	(3)
White Va	ariation	δW	θ X=0° , θ Y =0 °	70	-	-	%	(5), (6)
	Horizontal	θ X +		80	89	-		
Viewing Angle	TIONZONIai	θΧ-	CR≧10	80	89	-	Deg.	(1), (5)
	Vertical	θ Y +		80	89	-	Deg.	(1), (3)
	ventical	θΥ-		80	89	-		

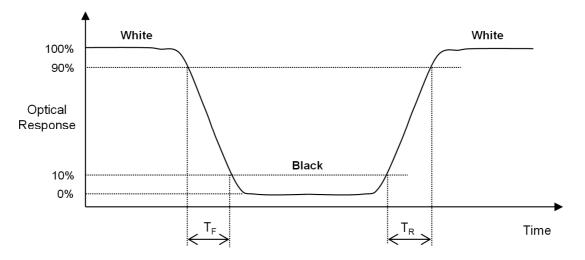
Definition :


Grayscale Maximum : Grayscale 255 (10 bits: grayscale 1023 ; 8 bits : grayscale 255 ; 6 bits: grayscale 63) White : Luminance of Grayscale Maximum (All R,G,B)

Black : Luminance of grayscale 0 (All R,G,B)

PRODUCT SPECIFICATION

Note (1)Definition of Viewing Angle ($\theta x, \theta y$):

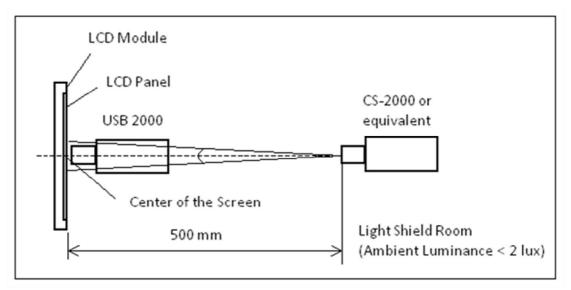


Note (2)Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression at center point.

Contrast Ratio (CR) = White / Black

Note (3)Definition of Response Time (T_R , T_F):

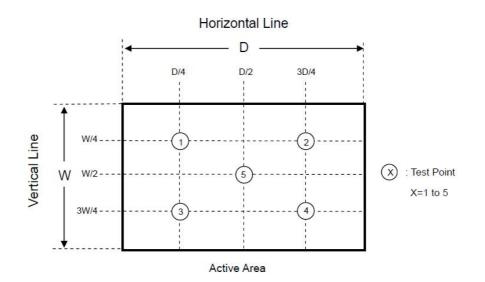


Note (4) Definition of Luminance of White (L_C):

Measure the luminance of White at center point.

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing.


Note (6) Definition of White Variation (δW):

Measure the luminance of White at 5 points.

Luminance of White : L(X) , where X is from 1 to 5.

 $\delta W = \frac{\text{Minimum [L(1) to L(5)]}}{\text{Maximum [L(1) to L(5)]}} \quad X \ 100\%$

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	90°C, 240 hours	
Low Temperature Storage Test	-40°C, 240 hours	
Thermal Shock Storage Test	-30°C, 0.5hour↔80°C, 0.5hour; 1hour/cycle,100cycles	(1),(2)
High Temperature Operation Test	85°C, 240 hours	(4),(5)
Low Temperature Operation Test	-30°C , 240 hours	
High Temperature & High Humidity Operation Test	60℃, RH 90%, 240 hours	
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$	(2), (3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	

Note (1)There should be no condensation on the surface of panel during test ,

Note (2) Temperature of panel display surface area should be 85°C Max.

- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 34 pcs LCD modules / 1 Box
- (2) Box dimensions: 465 (L) X 362 (W) X 314 (H) mm
- (3) Weight: approximately TBD Kg (34modules per box)

9.2 PACKING METHOD

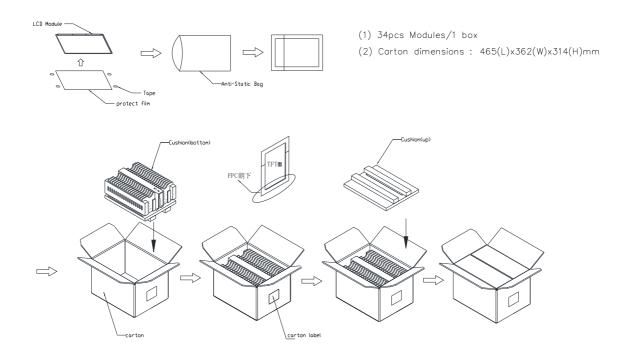


Figure. 9-1 Packing method

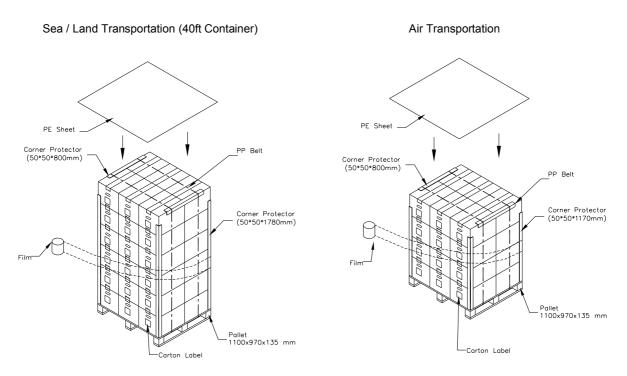


Figure. 9-2 Packing method

PRODUCT SPECIFICATION

9.3 UN-PACKING METHOD

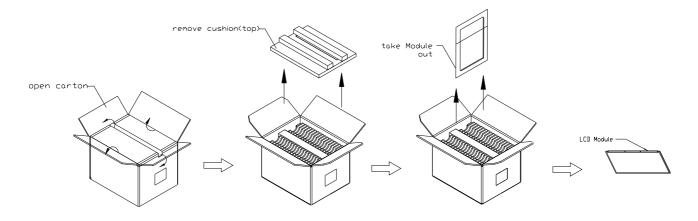
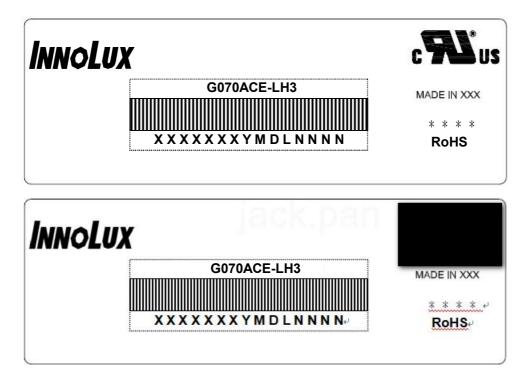


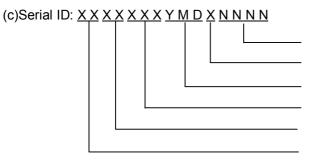
Figure. 9-3 UN-Packing method

28 July 2022



10. DEFINITION OF LABELS

10.1 INX MODULE LABEL


The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Note (1) Safety Compliance(UL logo) will open after C1 version.

(a)Model Name: G070ACE-LH3

(b)* * * * : Factory ID

Serial INX Internal Use Year, Month, Date INX Internal Use Revision INX Internal Use

Serial ID includes the information as below:

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1^{st} to 31^{st} , exclude I , O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product

11. PRECAUTIONS

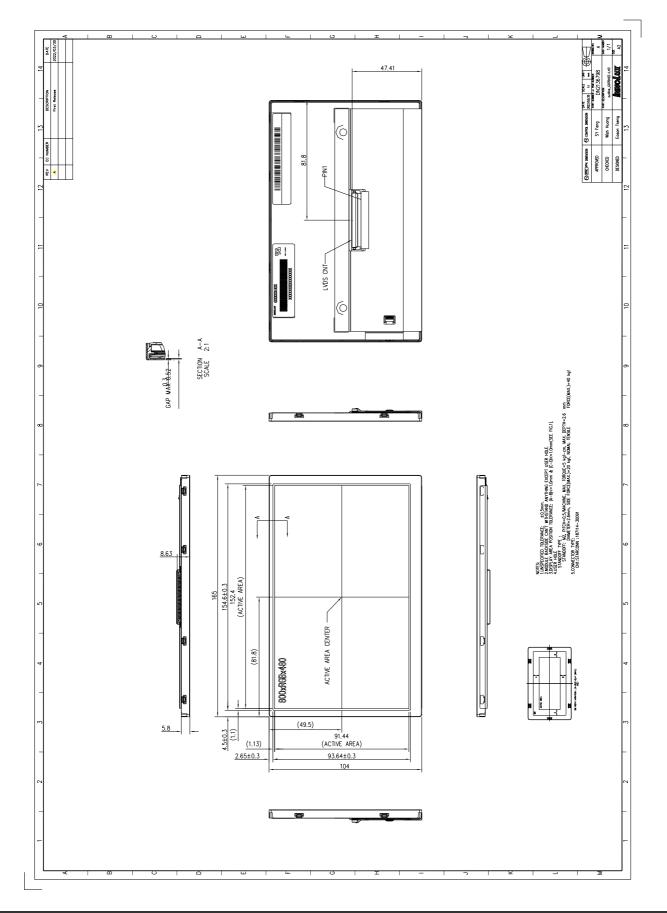
11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

11.2 STORAGE PRECAUTIONS

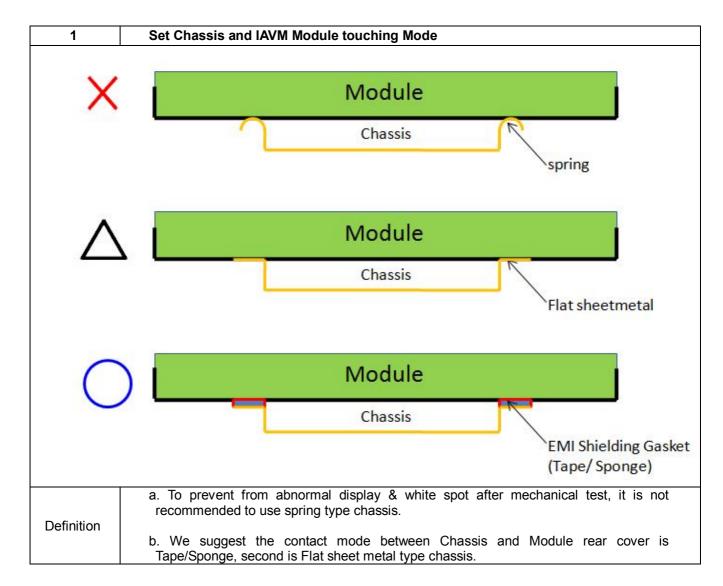
(1)When storing for a long time, the following precautions are necessary.

- (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH.
- (b) The polarizer surface should not come in contact with any other object.
- (c) It is recommended that they be stored in the container in which they were shipped.
- (d) Storage condition is guaranteed under packing conditions.
- (e)The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2)High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3)It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4)It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

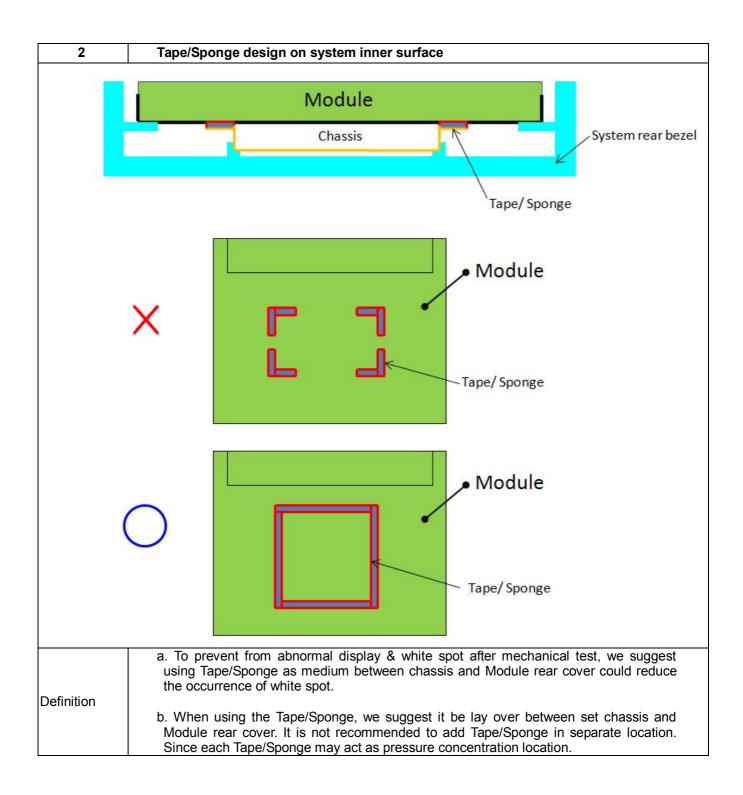


- - (1) Normal operating condition
 - (a) Display pattern: dynamic pattern (Real display)
 - (Note) Long-term static display can cause image sticking.
 - (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Suitable operating time: under 16 hours a day.
 - (b) Static information display recommended to use with moving image.
 - (c)Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
 - (3) Abnormal condition just means conditions except normal condition.

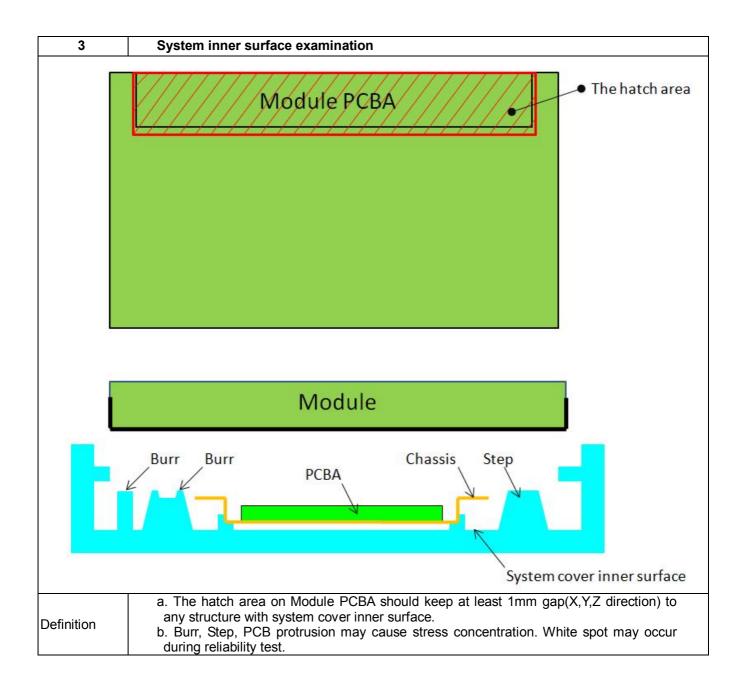
The copyright belongs to InnoLux. Any unauthorized use is prohibited.

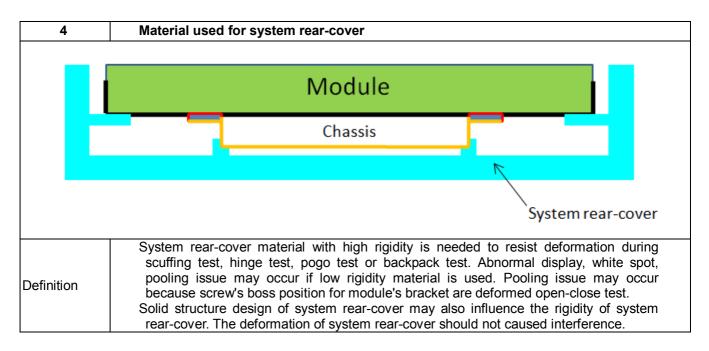


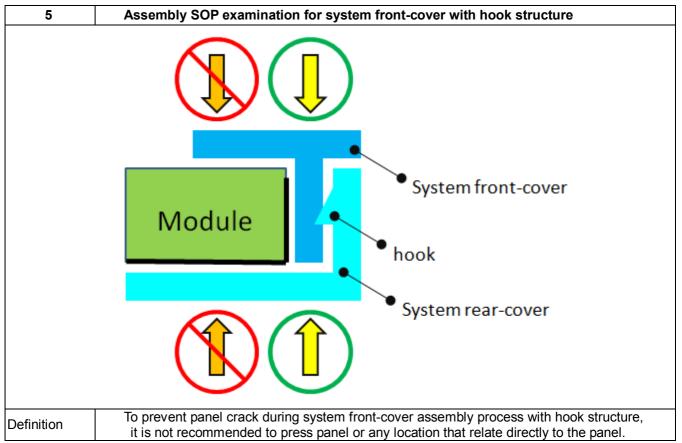
12 MECHANICAL CHARACTERISTICS

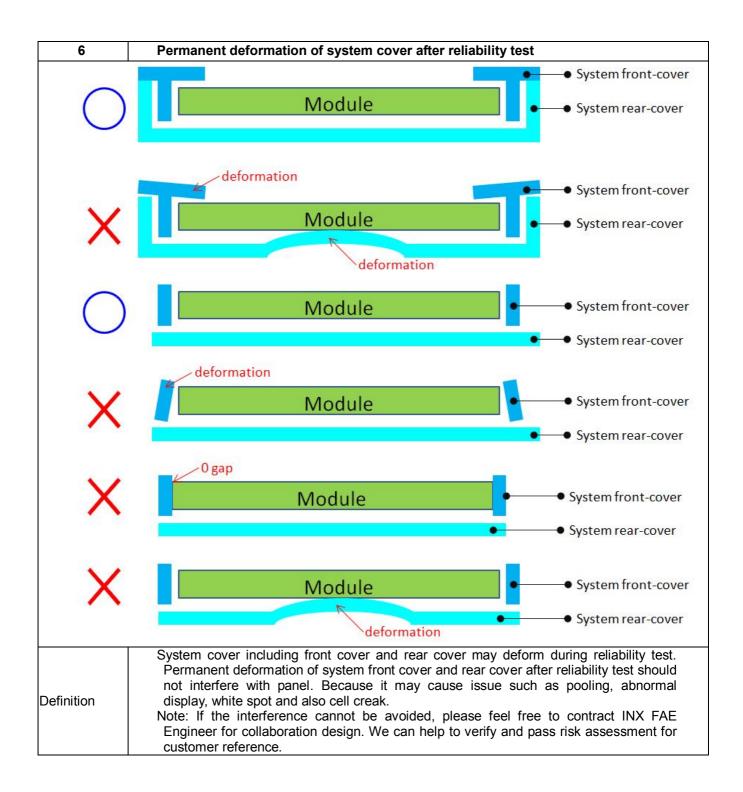


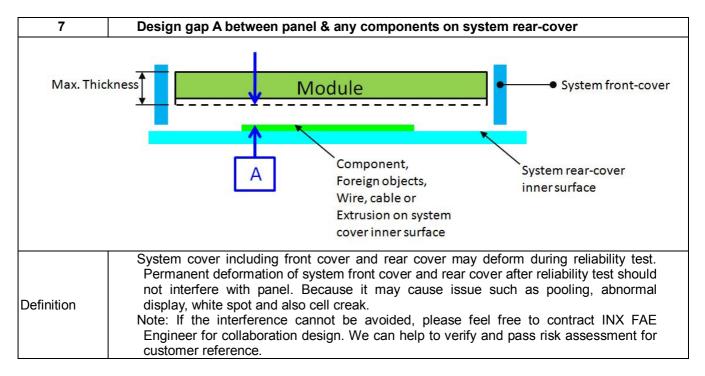
Appendix . SYSTEM COVER DESIGN NOTICE

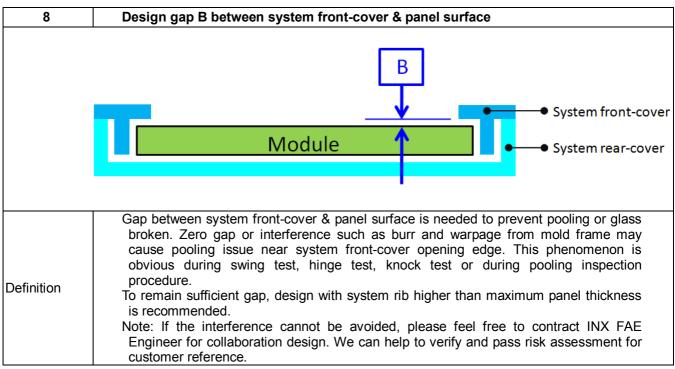


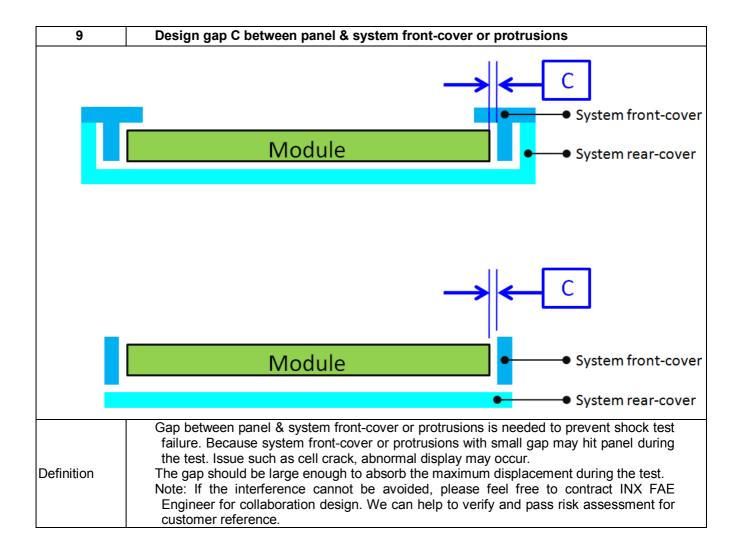


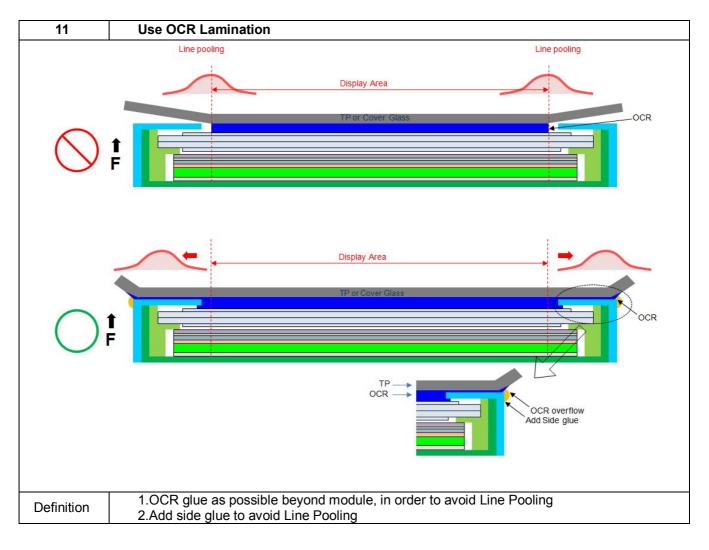



28 July 2022






28 July 2022



INNOLUX **PRODUCT SPECIFICATION** <u>群創光</u>電 Design distance between TP AA to LCD AA 10 LCD AA MODULE Frame Opening TPVA TPINK TP 4 Sponge 1 MODULE Frame TP VA should avoid TP ink area covering LCD AA or causing the module frame to be Definition exposed.

PRODUCT SPECIFICATION

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Fortec Group Members

DISTEC

A FORTEC GROUP MEMBER

FORTEC Elektronik AG Augsburger Str. 2b 82110 Germering

Phone: E-Mail: Internet: +49 89 894450-0 info@fortecag.de www.fortecag.de

Distec GmbH Office Vienna Nuschinggasse 12 1230 Wien

Phone: E-Mail: Internet: +43 1 8673492-0 info@distec.de www.distec.de

Distec GmbH Augsburger Str. 2b 82110 Germering

Phone: E-Mail:

Internet:

+49 89 894363-0 info@distec.de www.distec.de

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: E-Mail: Internet: +41 44 7446111 info@altrac.ch www.altrac.ch

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: E-Mail: Internet: +44 1480 411600 info@displaytechnology.co.uk www. displaytechnology.co.uk

Apollo Display Technologies, Corp. 87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

Phone: E-Mail: Internet: +1 631 5804360 info@apollodisplays.com www.apollodisplays.com

Austria

