

Datasheet

AUO

P460HVN05.0

UP-02-209

The information contained in this document has been carefully researched and is, to the best of our knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or consequential, resulting from the use of the information provided herein. Our products are not intended for use in systems in which failures of product could result in personal injury. All trademarks mentioned herein are property of their respective owners. All specifications are subject to change without notice.

Model Name: P460HVN05.0

Issue Date: 2021/06/17

()Preliminary Specifications(*)Final Specifications

Customer Signature	Date	AUO	Date
Approved By		Approval By PM Director CT Wu	
Note	ger,	Reviewed By RD Director Lamy Chen	
Corr		Reviewed By Project Leader Horis Wang	
		Prepared By PM Travis Huang	

Contents

Red	ord of	f Revis	sion	3
1.	Gene	ral Des	scription	4
2.	Absol	ute Ma	ximum Ratings	6
3.	Optica	al Spec	cification	7
4.	Interfa	ace Sp	ecification	10
	4.1.	Input	power	10
	4.2.	Input	Connection	11
	4.3.	Input	Data Format	13
	4	.3.1	LVDS color data mapping	13
		.3.2	Color Input Data Reference	15
5.	Signa	l Timin	g Specification	17
	5	5.1.1.	Timing Table (DE only Mode)	17
	5	5.1.2.	Signal Timing Waveform	18
	5.2.	Input	interface characteristics	19
	5.3.	Powe	r Sequence	21
6.	Backl	ight Sp	ecification	22
	6.1.	Electr	rical specification	22
	6.2.	Input	Pin Assignment	23
	6.3.	Powe	r Sequence of backlight (LED)	25
7.	Mech	anical (Characteristics	26
8.	Relia	oility Te	est Items	29
9.	Intern	ational	Standard	30
	9.1.	Safet	y	30
	9.2.	EMC		30
10.	P	acking		31
	10.1.	DE	FINITION OF LABEL:	31
	10.2.	Pac	cking Method	32
	10.3.	Pal	let and Shipment Information	33
11.	F	RECA	UTIONS	34
	11.1.	МО	DUNTING PRECAUTIONS	34
	11.2.	OP	ERATING PRECAUTIONS	34
	11.3.	Оре	erating Condition for Public Information Display	35
	11.4.	Ele	ctrostatic Discharge Control	35
	11.5.		cautions for Strong Light Exposure	
	11.6.		rage	
	11.7.		ndling Precautions for Protection Film	
	11.8.		st Resistance	

Record of Revision

Version	Date	Page	Description			
0.0	2020/07/09		First preliminary spec sheet release			
0.1	2020/08/14	12, 22	Update Power			
0.2	2020/09/15		Update specification sheet formation			
		5	Update placement suggestion, outline dimension			
		107	Update Colour Coordinates			
		10	Update input power			
		11, 12	Update Note 1~4			
		22	Update Power			
		26	Update outline dimension			
		27, 28	Update Drawing			
		32, 33	Update Packing Method.			
0.3	2020/10/6	5	Correct the description of placement.			
0.4	2020/12/15	6	Correct PST to 65			
		36, 37	Update Dust Proof description.			
0.5	2020/12/17	36, 37	Update Dust Proof description.			
0.6	2020/12/29	30	Update Safety Description			
1.0	2021/02/09		New Format Release			
		33	Update Packing Spec.			
		10	Update Power			
		22	Update Power			
1.1	2021/3/11	11	Update ADP Formate			
1.2	2021/6/17	31~33	Update Packing information.			
V						

1. General Description

This specification applies to the 46.0 inch Color TFT-LCD Module P460HVN05.0. This LCD module has a TFT active matrix type liquid crystal panel 1,920x1,080 pixels, and diagonal size of 46.0 inch. This module supports 1,920x1080 resolution display. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 10-bit gray scale signal for each dot.

The P460HVN05.0 has been designed to apply the 10-bit 2 channel LVDS interface method. The main feature of P460HVN05.0 would be high brightness, high contrast, and wide viewing angle.

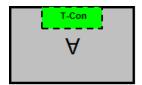
* General Information

Special material applied into this mo	odel is:					
Advanced wide temperature L0	. Advanced wide temperature LC(-40 $^{\circ}\text{C} \sim 110 ^{\circ}\text{C})$					
* General Information			Sec.			
Items	Specification	Unit	Note			
Active Screen Size	46.0	Inch				
Display Area	1018.08(H) x 572.67(V)	mm				
Outline Dimension	1044.1(H) x 598.7(V) x 36.4(D)	mm	D: Front bezel to Back Bezel			
Driver Element	a-Si TFT active matrix					
Display Colors	10 bit (8bit+FRC), 1073.7M	Colors				
Number of Pixels	1,920x1080	Pixel				
Pixel Pitch	0.53025 (H) x 0.53025(W)	mm				
Pixel Arrangement	RGB vertical stripe					
Display Operation Mode	Normally Black					
Surface Treatment	AG		Haze = 28%			
Rotate Function	Unachievable		Note 1			
Display Orientation	Landscape/Portrait Enable		Note 2			
Operating Time	24/7		See Chapter 11.3 for details			
Frame Rate	60	Hz	See Chapter 5.1 for details			
LED MTTF	70K	hrs	See Chapter 6.1 for details			

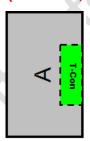
Note:

Note 1: Rotate Function refers to LCD display could be able to rotate. This function does not work in this model.

Note 2:


1. Landscape Mode:

The default placement is T-Con Side on the upper side and the image is shown reverse via viewing from the front.


2. Portrait Mode:

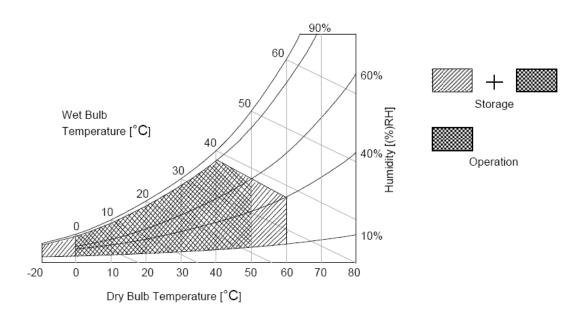
The default placement is that T-Con side has to be placed on the right side via viewing from the front.

Landscape (Front view)

Portrait (Front view)

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit

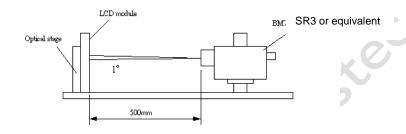

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vcc	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vin	-0.3	4	[Volt]	Note 1
Operating Temperature	TOP	0	+50	[°C]	Note 2
Operating Humidity	НОР	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST		65	[°C]	Note 3

Note 1: Duration:50 msec.

Note 2: Maximum Wet-Bulb should be 39°C and No condensation.

The relative humidity must not exceed 90% non-condensing at temperatures of 40°C or less. At temperatures greater than 40°C, the wet bulb temperature must not exceed 39°C.

Note 3: Surface temperature is measured at 50°C Dry condition



3. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark environment at 25°C while panel is placed in the default position. The default position is T-con side as the top side of panel. The value specified is at an approximate distance 50cm from the LCD surface at a viewing angle of ϕ and θ equal to 0° .

Fig.1 presents additional information concerning the measurement equipment and method.

Parameter		Symbol			Lloit	Notos	
Parameter	Symbol	Min.	Тур.	Max	Unit	Notes	
Contrast Ratio		3200 4000				1	
Luminance (White)	L _{WH}	2000	2500		cd/m²	2	
ce Variation	б wніте(9Р)	·		1.33		3	
se Time (G to G)	Тү		8		ms	4	
amut	NTSC		72		%		
pordinates	O						
Red	Rx		0.651				
	Ry		0.336				
Green	Gx		0.320				
	GY	Turn 0.02	0.614	Turn 10.02			
Blue	B _X	тур0.03	0.150	тур.+0.03			
	By		0.069				
White	Wx		0.313				
	WY		0.329				
Angle						5	
x axis, right(φ=0°)	θ_{r}		85		degree		
x axis, left(φ=180°)	θι		85		degree		
y axis, up(φ=90°)	θυ		85		degree		
y axis, down (φ=270°)	θ_{d}		85		degree		
	Luminance (White) ce Variation se Time (G to G) amut cordinates Red Green Blue White Angle x axis, right(φ=0°) x axis, left(φ=180°) y axis, up(φ=90°)	Ratio CR Luminance (White) Lwh ce Variation $\delta_{WHITE(9P)}$ se Time (G to G) $T\gamma$ amut NTSC coordinates Red Rx Ry Green Gx Gy Blue Bx By White Wx Wy Angle $x = x_1 = x_2 = x_3 = x_4 =$	Min. Ratio CR 3200 Luminance (White) Lwh 2000 ce Variation δwhite(9P) se Time (G to G) Tγ amut NTSC oordinates Red Rx Green Gx Blue Bx White Wx Wy Angle x axis, right(φ=0°) θ _r x axis, left(φ=180°) θ _l y axis, up(φ=90°) θ _u	Ratio CR 3200 4000	Ratio CR 3200 4000	Parameter Symbol Min. Typ. Max	

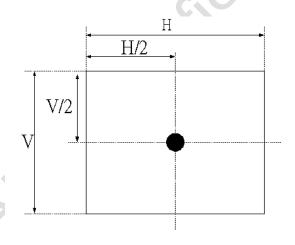
Note:

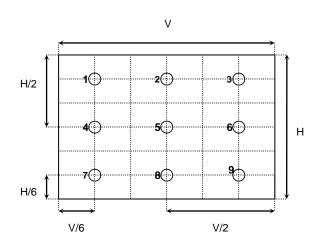
1. Contrast Ratio (CR) is defined mathematically as:

Contrast Ratio=
$$\frac{\text{Surface Luminance of L}_{\text{on5}}}{\text{Surface Luminance of L}_{\text{off5}}}$$

- 2. Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2. When lamp current I_H = 11mA. L_{WH}=Lon5 where Lon5 is the luminance with all pixels displaying white at center 5 location.
- 3. The variation in surface luminance, δWHITE is defined (center of Screen) as:

 $\delta_{\text{WHITE(9P)}}$ = Maximum($L_{\text{on1}}, L_{\text{on2}}, ..., L_{\text{on9}}$)/ Minimum($L_{\text{on1}}, L_{\text{on2}}, ..., L_{\text{on9}}$)


4. Response time T_{γ} is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_{ν} =60Hz to optimize.


 T_{γ} is determined by 10% to 90% brightness difference of rising or falling period. (As illustrated)

Ме	asured	Target							
Respo	onse Time	0%	0% 25%		75%	100%			
	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%			
	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%			
Start	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%			
	75%	75% to 0%	75% to 25%	75% to 50%		75% to 100%			
	100%	100% to 0%	100% to 25%	100% to 50%	100% to 75%				

5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG4.

FIG. 2 Luminance

FIG.3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of gray(bright) " and "any level of gray(dark)".

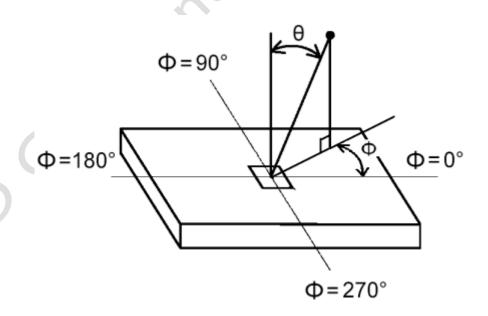
Any level of gray (Bright)

Any level of gray (Dark)

O%, 25%, 50%, 75%, 100%

Own, 25%, 50%, 75%, 100%

Own, 25%, 50%, 75%, 100%


Own, 25%, 50%, 75%, 100%

Time

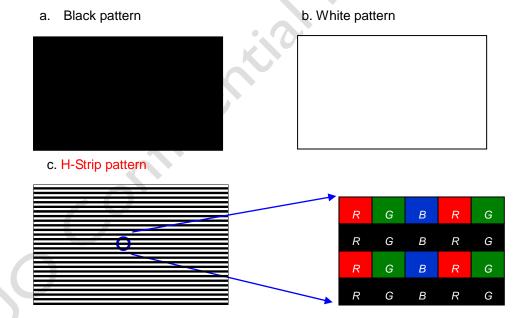
Try(F)

Try(R)

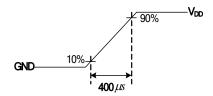
FIG.4 Viewing Angle

4. Interface Specification

4.1. Input power


The P460HVN05.0 module requires power inputs which are employed to power the LCD electronics and to drive the TFT array and liquid crystal.

Item		Symbol	Min.	Тур.	Max	Unit	Note
Power Supply Input Voltage		V_{DD}	10.8	12	13.2	V	1
	Black pattern		-	0.5	0.6	Α	
Power Supply Input Current	White pattern	I _{DD}	-	0.9	1	Α	
	H-strip pattern		-	0.8	1	Α	2
	Black pattern		-	5.3	6.3	Watt	2
Power Consumption	White pattern	Pc	-	10.2	12.2	Watt	
	H-strip pattern		-	9.6	11.5	Watt	
Inrush Current		I _{RUSH}			3	Α	3


The ripple voltage should be fewer than 5% of VDD.

Note1. Test Condition:

- (1) V_{DD} = 12.0V, (2) F_{V} = 60Hz, (3) F_{C} F_{C}
- (5) Power dissipation check pattern. (Only for power design)

Note2. Measurement condition : Rising time = 400us

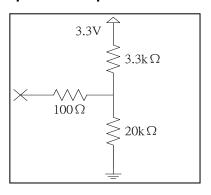
4.2. Input Connection

- LCD connector:
- 187059-5122(P-TWO) / 115E51-0000RA-M3-R(Starconn) / FI-RTE51SZ-HF(JAE)
- Matching: FI-RE51HL or Compatible

		J: FI-RESTHL or Compatible					
PIN	Symbol	Description	Note	PIN	Symbol	Description	Note
1	N.C.	AUO Internal Use Only	1	26	N.C.	AUO Internal Use Only	1
2	N.C.	AUO Internal Use Only	1	27	N.C.	AUO Internal Use Only	1
3	N.C.	AUO Internal Use Only	1	28	CH2_0-	LVDS Channel 2, Signal 0-	
4	N.C.	AUO Internal Use Only	1	29	CH2_0+	LVDS Channel 2, Signal 0+	
		LVDS 8/10 bit input selection					
5	BITSEL	Low(GND): 8bits	4	30	CH2_1-	LVDS Channel 2, Signal 1-	
		Open/High(3.3V): 10bits					
6	N.C.	No connection	2	31	CH2_1+	LVDS Channel 2, Signal 1+	
7	LVDS_SEL	Open/High(3.3V) for NS,	2,3	32	CH2_2-	LVDS Channel 2, Signal 2-	
	LVDS_SEL	Low(GND) for JEIDA	2,3	32	CH2_2-	LVD3 Charmer 2, Signal 2-	
8	N.C.	No connection	1	33	CH2_2+	LVDS Channel 2, Signal 2+	
9	N.C.	No connection	1	34	GND	Ground	
10	N.C.	No connection	1	35	CH2_CLK-	LVDS Channel 2, Clock -	
11	GND	Ground		36	CH2_CLK+	LVDS Channel 2, Clock +	
12	CH1_0-	LVDS Channel 1, Signal 0-		37	GND	Ground	
13	CH1_0+	LVDS Channel 1, Signal 0+		38	CH2_3-	LVDS Channel 2, Signal 3-	
14	CH1_1-	LVDS Channel 1, Signal 1-		39	CH2_3+	LVDS Channel 2, Signal 3+	
15	CH1_1+	LVDS Channel 1, Signal 1+		40	CH2_4-	LVDS Channel 2, Signal 4-	
16	CH1_2-	LVDS Channel 1, Signal 2-		41	CH2_4+	LVDS Channel 2, Signal 4+	
17	CH1_2+	LVDS Channel 1, Signal 2+		42	N.C.	AUO Internal Use Only	1
18	GND	Ground		43	N.C.	No connection	
19	CH1_CLK-	LVDS Channel 1, Clock -		44	GND	Ground	
20	CH1_CLK+	LVDS Channel 1, Clock +		45	GND	Ground	
21	GND	Ground		46	GND	Ground	
22	CH1_3-	LVDS Channel 1, Signal 3-		47	N.C.	No connection	1
23	CH1_3+	LVDS Channel 1, Signal 3+		48	V _{DD}	Power Supply, +12V DC Regulated	
24	CH1_4-	LVDS Channel 1, Signal 4-		49	V _{DD}	Power Supply, +12V DC Regulated	
25	CH1_4+	LVDS Channel 1, Signal 4+		50	V _{DD}	Power Supply, +12V DC Regulated	
				51	V_{DD}	Power Supply, +12V DC Regulated	

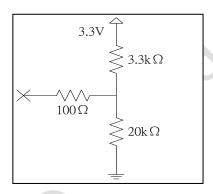
Note1. Please leave this pin unoccupied. It can not be connected by any signal (Low/GND/High).

Note2. Input control signal threshold voltage definition


Item	Symbol	Min.	Тур.	Max.	Unit
Input High Threshold Voltage	VIH	2.7	-	3.6	V
Input Low Threshold Voltage	VIL	0	-	0.6	V

Note3. LVDS data format selection

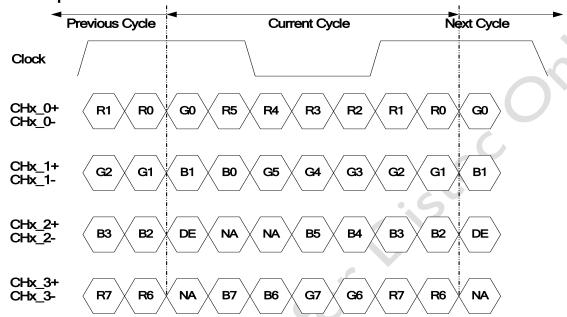
LVDS_SEL	Mode
H or OPEN	NS
L	Jeida


Input equivalent impedance of LVDE_SEL pin

Note4. Data Bit mode format selection

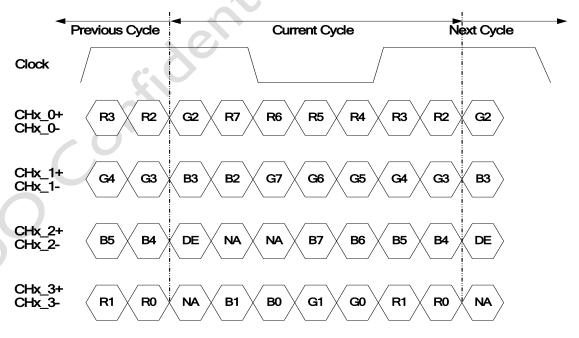
BIT_SEL	Mode
H or OPEN	10Bit
L	8Bit

Input equivalent impedance of BIT_SEL pin



4.3. Input Data Format

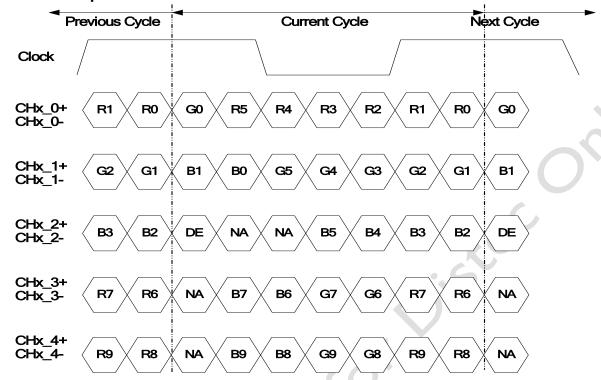
4.3.1 LVDS color data mapping


LVDS Option for 8bit

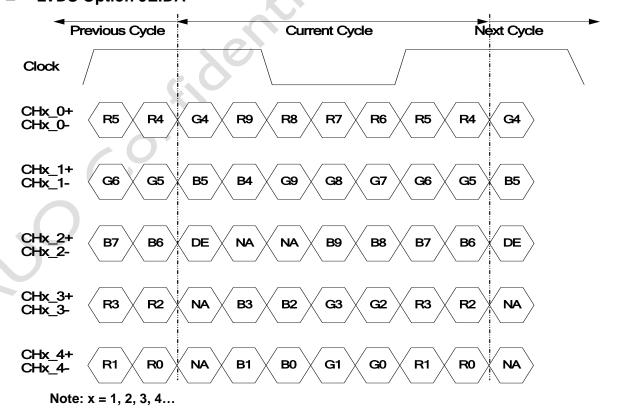
■ LVDS Option NS

Note: x = 1, 2, 3, 4...

■ LVDS Option JEIDA



Note: x = 1, 2, 3, 4...


LVDS Option for 10bit

LVDS Option NS

Note: x = 1, 2, 3, 4...

■ LVDS Option JEIDA

4.3.2 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 8 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

COLOR DATA REFERENCE

8bit

											I	npu	t Co	olor	Data	à									
	Color				RI	ΕD							GRI	EEN							BL	UE			
	Coloi	MS	В					LS	SB	MS	В					LS	В	MS	В					LS	SB
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	В6	B5	В4	ВЗ	B2	В1	ВО
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R																									
	RED(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
G																									
	GREEN(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В																									
	BLUE(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Option for 10bit

The brightness of each primary color (red, green and blue) is based on the 10 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

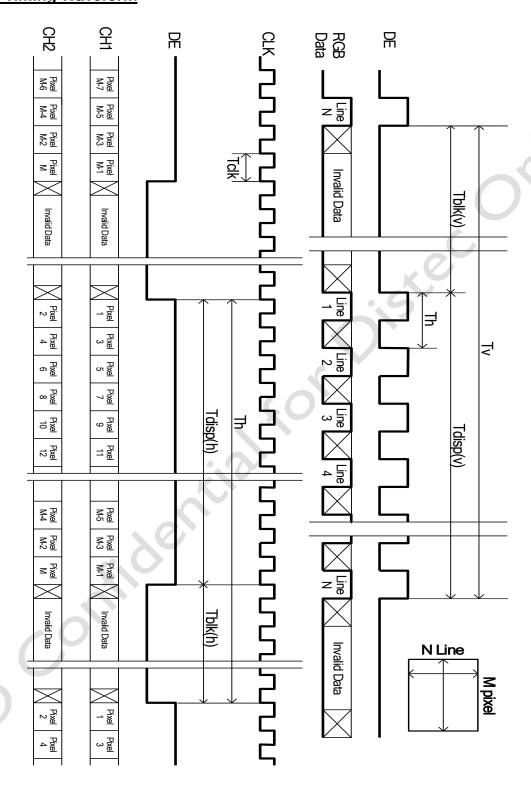
														In	put	Col	or E	Data	ì												
	Color					RE	ΕD								(GRI	ΞEN	ı								BL	UE				
	Color	MS	В							L	SB	M	SB							LS	SB	MS	SB							L	SB
		R9	R8	R7	R6	R5	R4	R3	R2	R1	R0	G9	G8	G7	G6	G5	G4	G3	G2	G1	GO	В9	B8	В7	В6	B5	В4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	Blue(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R																															
	RED(1022)	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(1023)	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0<	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
G							60																								
	GREEN(1022)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
	GREEN(1023)	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В																															
	BLUE(1022)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	0
	BLUE(1023)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

5. Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

5.1.1. Timing Table (DE only Mode)

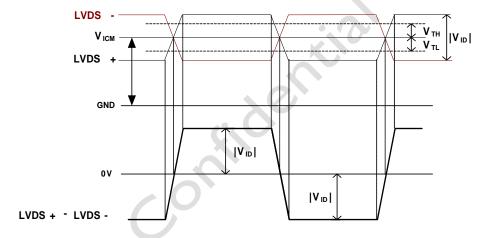
Vertical Frequency Range (60Hz)

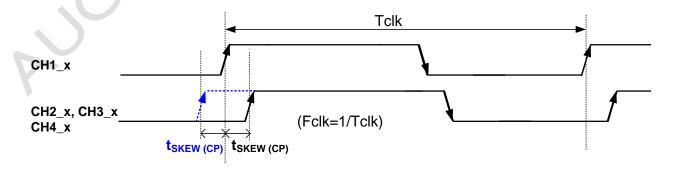

Signal	Item	Symbol	Min.	Тур.	Max	Unit
	Period	Tv	1100	1125	1480	Th
Vertical Section	Active	Tdisp (v)		1080		
	Blanking	Tblk (v)	20	45	400	Th
	Period	Th	1040	1100	1328	Tclk
Horizontal Section	Active	Tdisp (h)		960		
	Blanking	Tblk (h)	80	140	368	Tclk
Clock	Frequency	Fclk=1/Tclk	53	74.25	82	MHz
Vertical Frequency	Frequency	Fv	47	60	63	Hz
Horizontal Frequency	Frequency	Fh	60	67.5	73	KHz

Notes:

- (1) Display position is specific by the rise of DE signal only.
 Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.
- (2) Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.
- (3)If a period of DE "High" is less than 1920 DCLK or less than 1080 lines, the rest of the screen displays black.
- (4)The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

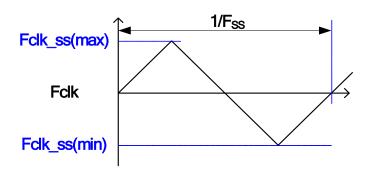
5.1.2. Signal Timing Waveform



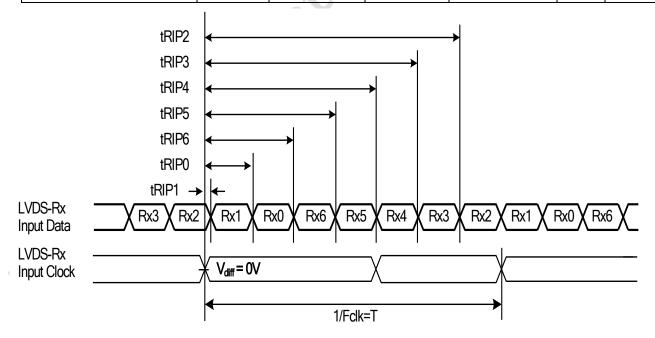

5.2. Input interface characteristics

	Parameter	Symbol		Value		- Unit	Note
	Falametei	Symbol	Min.	Тур.	Max	Offic	Note
	Input Differential Voltage	V _{ID}	200	400	600	mV _{DC}	1
	Differential Input High Threshold Voltage	Vтн	+100		+300	mV _{DC}	1
	Differential Input Low Threshold Voltage	V _{TL}	-300		-100	mV _{DC}	1
	Input Common Mode Voltage	V _{ICM}	1.1	1.25	1.4	V _{DC}	1
LVDS	Input Channel Pair Skew Margin	tskew (CP)	-500	-1	+500	ps	2
Interface	Input Channel Pair Skew Margin (only for M'Star MST7428BB)	tskew (CP)	-400		+400	ps	2
	Receiver Clock : Spread Spectrum Modulation range	Fclk_ss	Fclk -3%	.5	Fclk +3%	MHz	3
	Receiver Clock : Spread Spectrum Modulation frequency	Fss	30)	200	KHz	3
	Receiver Data Input Margin Fclk = 85 MHz Fclk = 65 MHz	tRMG	-0.4 -0.5		0.4 0.5	ns	8

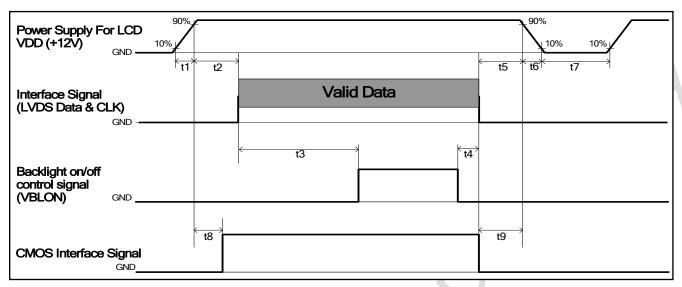
Note1. VICM = 1.25V



Note2. Input Channel Pair Skew Margin


Note3. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures.

Note4. Receiver Data Input Margin


Parameter	Cumbal		l Init	Note		
Parameter	Symbol	Min	Min Type		Unit	Note
Input Clock Frequency	Fclk	Fclk (min)		Fclk (max)	MHz	T=1/Fclk
Input Data Position0	tRIP1	- tRMG	0	[tRMG]	ns	
Input Data Position1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	ns	
Input Data Position2	tRIP6	2T/7- tRMG	2T/7	2T/7+ tRMG	ns	
Input Data Position3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	ns	
Input Data Position4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	ns	
Input Data Position5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	ns	
Input Data Position6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	ns	

5.3. Power Sequence

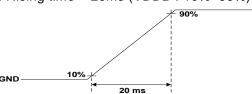
Power Sequence of LCD

Doromotor			Lloit	
Parameter	Min.	Type.	Max.	Unit
t1	0.4	<u>(-</u> -0	30	ms
t2	0.1		50	ms
t3	450			ms
t4	0*1			ms
t5	0			ms
t6			*2 	ms
t7	500			ms
t8	10		50	ms
t9	0			ms

Note:

(1) t4=0 : concern for residual pattern before BLU turn off.

(2) t6: voltage of VDD must decay smoothly after power-off. (customer system decide this value)


6. Backlight Specification

6.1. Electrical specification

	Item	Symbol		Condition		Spec		Unit	Note
	item	Syli	IDOI	Condition	Min	Тур	Max	Onit	Note
1	Input Voltage	VD	VDDB		22.58	24	25.2	VDC	-
2	Input Current	I _D	I _{DDB}			6.9		ADC	1
3	Input Power	Po	DDB	VDDB=24V		166		W	1
4	Inrush Current	I _{RL}	JSH	VDDB=24V	-	- 10		ADC	2
5	On/Off control voltage	V	ON	VDDB=24V	2	-	3.3	VDC	-
5	On/Off control voltage	V_{BLON}	OFF	VDDB=24V	0	٠.٠	0.8	VDC	3
6	On/Off control current	IBLON		VDDB=24V		-	1.5	mA	-
7	External PWM	\/ ED\/\\	MAX	VDDB=24V	2	-	5.5	VDC	-
7	Control Voltage	V_EPWM	MIN	VDDB=24V	0	-	0.8	VDC	-
8	External PWM Control Current	I_EF	PWM	VDDB=24V	-	-	2	mADC	-
9	External PWM Duty ratio	D_EI	PWM	VDDB=24V	5	-	100	%	4
10	External PWM Frequency	F_EF	PWM	VDDB=24V	90	180	240	Hz	-
11	DET status signal	DET	DET HI		Оре	en Colle	ctor	VDC	5
	DET status signal				0	-	0.8	VDC	5
12	Input Impedance	R	in	VDDB=24V	300			Kohm	-
13	LED MTTF	LED_	LED_MTTF		70,000			Hr	6, 7

Note 1 : Dimming ratio= 100% (MAX) (Ta=25±5°C, Turn on for 45minutes)

Note 2: Measurement condition Rising time = 20ms (VDDB: 10%~90%) and at dimming ration = 100%

Note 3: When BLU off (VDDB = 24V , VBLON = 0V) , IDDB (max) = 0.1A

Note 4: Less than 5% dimming control is functional well and no backlight shutdown happened

Note 5: Normal: 0~0.8V; Abnormal: Open collector

Note 6: LED MTTF is defined as the time which luminance of LED is 50% compared to its original value.

[Operating condition: Continuous operating at Ta = 25±2°C, for single LED only]

Note7: MTTF is a reference index, it is not representative of warranty.

6.2. Input Pin Assignment

LED driver board connector: CI0114M1HRL-NH(CviLux)

Pin	Symbol	Description	NOTE
1	VDDB	Operating Voltage Supply, +24V DC regulated	
2	VDDB	Operating Voltage Supply, +24V DC regulated	
3	VDDB	Operating Voltage Supply, +24V DC regulated	
4	VDDB	Operating Voltage Supply, +24V DC regulated	
5	VDDB	Operating Voltage Supply, +24V DC regulated	
6	BLGND	Ground and Current Return	
7	BLGND	Ground and Current Return	
8	BLGND	Ground and Current Return	
9	BLGND	Ground and Current Return	
10	BLGND	Ground and Current Return	
11	DET	BLU status detection: Normal : 0~0.8V ; Abnormal : Open collector (Recommend Pull high R>10K, VDD=3.3V)	1
12	VBLON	BLU On-Off control: BL On: High/Open (2V~5.5V); BL off: Low (0~0.8V/GND)	2,3
13	NC	NC	4
14	PDIM	External PWM (5%~100% Duty, open for 100%)	2, 5

LED driver board connector: Cl0112M1HRL-NH(CviLux)

Pin	Symbol	Description	Note
1	VDDB	Operating Voltage Supply, +24V DC regulated	
2	VDDB	Operating Voltage Supply, +24V DC regulated	
3	VDDB	Operating Voltage Supply, +24V DC regulated	
4	VDDB	Operating Voltage Supply, +24V DC regulated	
5	VDDB	Operating Voltage Supply, +24V DC regulated	
6	BLGND	Ground and Current Return	
7	BLGND	Ground and Current Return	
8	BLGND	Ground and Current Return	
9	BLGND	Ground and Current Return	
10	BLGND	Ground and Current Return	
11	NC	No connection	4
12	NC	No connection	4

Note1. DET status

DET	BLU status
0 ~ 0.8V	Normal
Open collector	Abnormal

Recommend pull high R > 10K ohm, pull high voltage VDD = 3.3V

Note2. input control signal threshold voltage definition

Item	Symbol	Min.	Тур.	Max.	Unit
Input High Threshold Voltage	VIH	2	-	5.5	V
Input Low Threshold Voltage	VIL	0	ı	0.8	V

Note3. VBLON

Mode selection

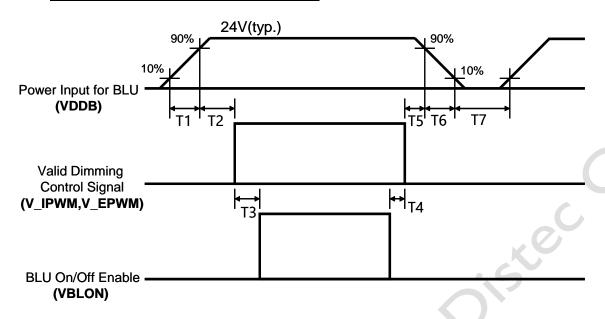
VBLON	Note
H or OPEN	BL On
L	BL Off

Note4. Please leave this pin unoccupied. It cannot be connected by any signal (Low/GND/High).

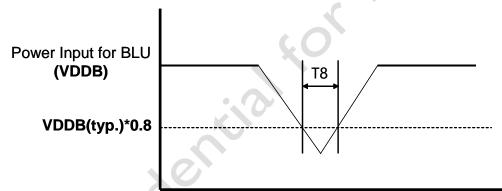
Note5. PDIM

PWM Dimming range:

PWM Dimming range:



(Note*) IF External PWM function includes 5% dimming ratio. Judge condition as below:


- (1) Backlight module must be lighted ON normally.
- (2) All protection function must work normally.
- (3) Uniformity and flicker could NOT be guaranteed

6.3. Power Sequence of backlight (LED)

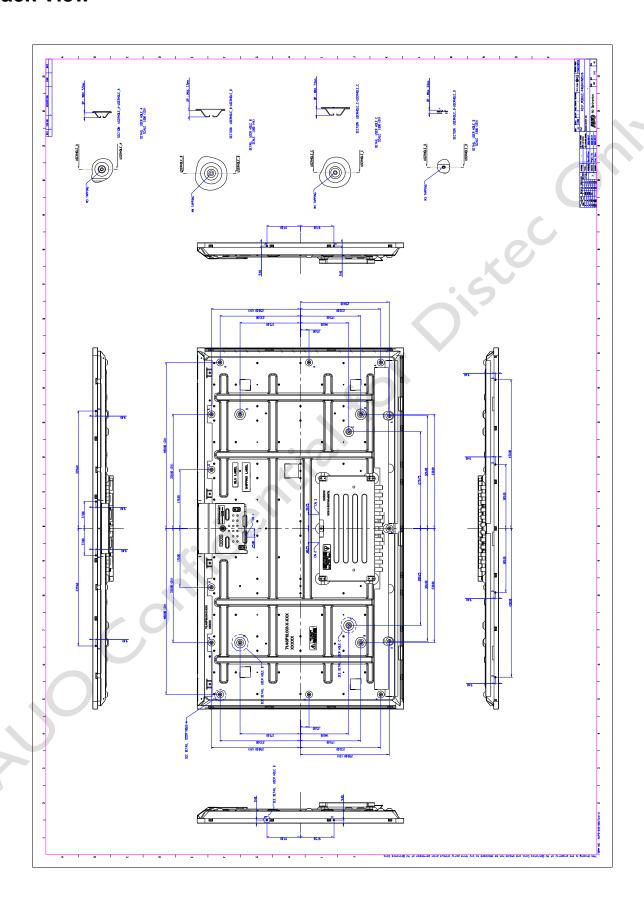
Dip condition

Donomotor		Unite		
Parameter	Min	Тур	Max	Units
T1	20	-	-	ms *1
T2	500	-	-	ms
Т3	250	-	-	ms
T4	0	-	•	ms
T5	1	-	•	ms
Т6		-	-	ms
Т8	-	-	10	Ms

7. Mechanical Characteristics

The contents provide general mechanical characteristics for the model P460HVN05.0. In addition the figures in the next page are detailed mechanical drawing of the LCD.

Outline Dimension	Horizontal (typ.)	1044.1mm	
	Vertical (typ.)	598.7mm	
	Depth (min.)	36.4mm	
Daniel On anima Anna	Horizontal (typ.)	1024.5mm	
Bezel Opening Area	Vertical (typ.)	579.1mm	
A ation Diameter Assa	Horizontal	ontal 1018.08 mm	
Active Display Area	Vertical	572.67 mm	
Weight	11,000(g)		



Front View

Back View

8. Reliability Test Items

	Test Item	Q'ty	Condition
1	High temperature storage test	3	60°C, 500hrs
2	Low temperature storage test	3	-20°C, 500hrs
3	High temperature operation test	3	50°C, 500hrs
4	Low temperature operation test	3	-10°C, 500hrs
7	Vibration test (With carton)	1 (PKG)	Random wave (1.04G RMS, 2-200Hz) 20 mins per each X,Y,Z axes PSD(G^2/Hz) at different frequency show as below 2Hz, 0.0010 4Hz, 0.0300 8Hz, 0.0300 40Hz, 0.0030 55Hz, 0.0100 75Hz, 0.0100 200Hz, 0.0008
8	Drop test (With carton)	1 (PKG)	Drop Height: 25.4cm, Surround four flats and bottom flat twice (ASTMD4169)

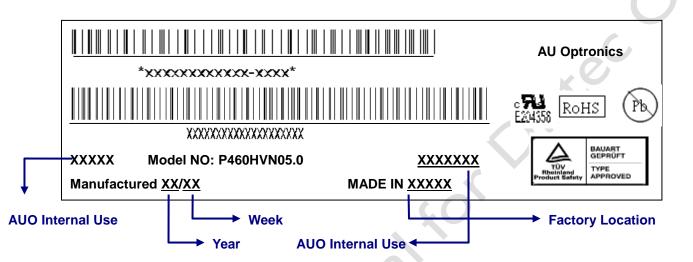
9. International Standard

9.1. Safety

- (1) UL 62368-1 : Audio/video, information and communication technology equipment Part 1: Safety requirements
- (2) IEC 62368-1 : Audio/video, information and communication technology equipment –Part 1: Safety requirements
- (3) EN 62368-1 : Audio/video, information and communication technology equipment –Part 1: Safety requirements

9.2. <u>EMC</u>

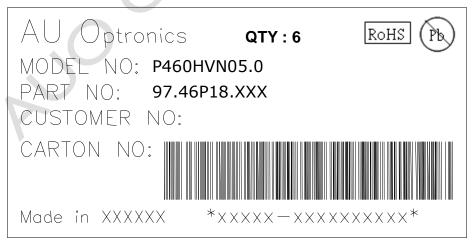
- (1) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electro technical Standardization. (CENELEC), 1998



10. Packing

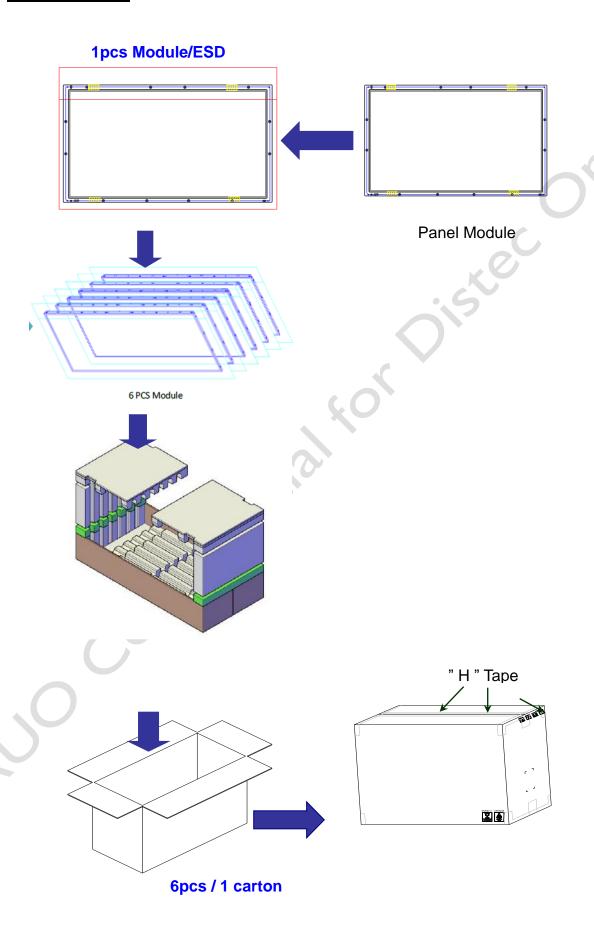
10.1. DEFINITION OF LABEL:

A. Panel Label:

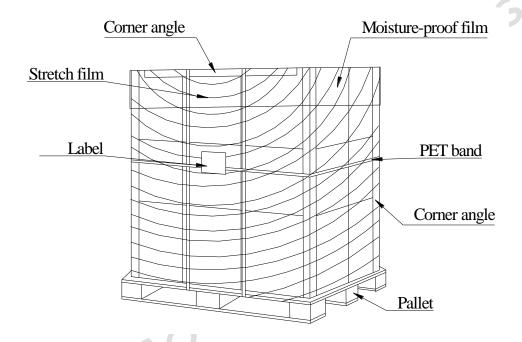


Green mark description

- (1) For Pb Free Product, AUO will add for identification.
- (2) For RoHs compatible products, AUO will add RoHS for identification.


Note: The green Mark will be present only when the green documents have been ready by AUO internal green team. (definition of green design follows the AUO green design checklist.)

B. Carton Label: (TBD)


10.2. Packing Method

10.3. Pallet and Shipment Information

			Packing		
	Item	Qty.	Dimension	Weight (kg)	Remark
1	Packing Box	6pcs/box	1160(L)mm*562(W)mm*690(H)mm	74.3	
2	Pallet	1	1180(L)mm*1150(W)mm*132(H)mm	14.7	
3	Boxes per Pallet	2 boxes/Pallet (By			
4	Panels per Pallet	12pcs/pallet(By Air); 12 pcs/Pallet (By Sea)			
5	Pallet	12(by Air)	1180(L)mm*1150(W)mm*822(H)mm	163.3	
	after packing		(by Air)		
		24(by sea)	1180(L)mm*1150(W)mm*1644(H)mm	311.9	40ft HQ
			(by Sea)		ייייייייייייייייייייייייייייייייייייייי

11. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

11.1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

11.2. OPERATING PRECAUTIONS

- (1) The device listed in the product specification sheets was designed and manufactured for PID application
- (2) The spike noise causes the miss-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (3) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (4) Brightness of LED depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (5) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (6) When fixed patterns are displayed for a long time, remnant image is likely to occur.

(7) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

11.3. Operating Condition for Public Information Display

The device listed in the product specification is designed and manufactured for PID (Public Information Display) application. To optimize module's lifetime and function, below operating usages are required.

- (1) Normal operating condition
 - 1. Operating temperature: 0~40°C
 - 2. Operating humidity: 10~90%
 - Display pattern: dynamic pattern (Real display).
 Note) Long-term static display would cause image sticking.
- (3) Operation usage to protect against image sticking due to long-term static display.
 - (1) Suitable operating time: 24 hours a day or less.
 - (* The moving picture can be allowed for 24 hours a day)
 - (2) Liquid Crystal refresh time is required. Cycling display between 5 minutes' information (static) display and 10 seconds' moving image.
 - (3) Periodically change background and character (image) color.
 - (4) Avoid combination of background and character with large different luminance.
- (3) Periodically adopt one of the following actions after long time display.
 - A. Running the screen saver (motion picture or black pattern)
 - B. Power off the system for a while
- (4) LCD system is required to place in well-ventilated environment. Adapting active cooling system is highly recommended.
- (5) Product reliability and functions are only guaranteed when the product is used under right operation usages. If product will be used in extreme conditions, such as high temperature/ humidity, display stationary patterns, or long operation time etc..., it is strongly recommended to contact AUO for filed application engineering advice. Otherwise, its reliability and function may not be guaranteed. Extreme conditions are commonly found at airports, transit stations, banks, stock market and controlling systems.

11.4. Electrostatic Discharge Control

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

11.5. Precautions for Strong Light Exposure

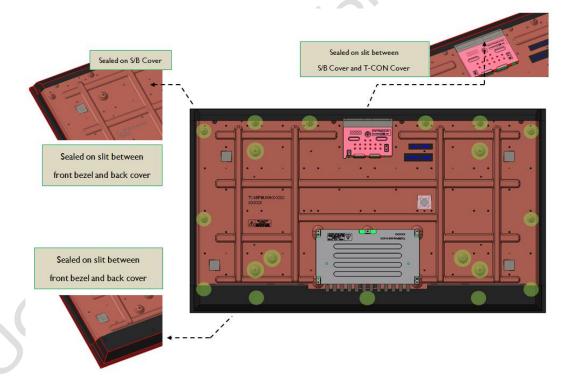
Strong light exposure causes degradation of polarizer and color filter.

11.6. Storage

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.
- (3) Storage condition is guaranteed under packing conditions.
- (4) The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition.

11.7. Handling Precautions for Protection Film


- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

11.8. Dust Resistance

- (1) AUO module dust tests are conducted with marked areas (e.g., holes and slits around the front bezel and back cover) sealed, to comply with JIS D0207 (see Figure 1).
- (2) To prevent particles from entering the module, please ensure the set has all the highlighted areas (holes and slits) adequately sealed or covered by set mechanism.
- (3) AUO's testing procedure cannot replicate all real world operation scenarios. It is up to the module user to apply the most appropriate dust resistance solution for its particular application.

Figure 1

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894450-0
E-Mail: info@fortecag.de
Internet: www.fortecag.de

Fortec Group Members

Austria

Distec GmbH Office Vienna

Nuschinggasse 12 1230 Wien

Phone: +43 1 8673492-0
E-Mail: info@distec.de
Internet: www.distec.de

Germany

Distec GmbH

Augsburger Str. 2b 82110 Germering

Phone: +49 89 894363-0
E-Mail: info@distec.de
www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3 5436 Würenlos

Phone: +41 44 7446111
E-Mail: info@altrac.ch
Internet: www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court Hichingbrooke Business Park Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: info@displaytechnology.co.uk
Internet: www.displaytechnology.co.uk

USA

Apollo Display Technologies, Corp.

87 Raynor Avenue, Unit 1Ronkonkoma, NY 11779

 Phone:
 +1 631 5804360

 E-Mail:
 info@apollodisplays.com

 Internet:
 www.apollodisplays.com