

mailto:sales@fortecag.de
http://www.fortecag.de/
mailto:west@fortecag.de
http://www.fortecag.de/
mailto:office@fortec.at
http://www.fortec.at/
mailto:info@altrac.ch
http://www.altrac.ch/

The information contained in this document has been carefully researched and is, to the best of our
knowledge, accurate. However, we assume no liability for any product failures or damages, immediate or
consequential, resulting from the use of the information provided herein. Our products are not intended for
use in systems in which failures of product could result in personal injury. All trademarks mentioned herein
are property of their respective owners. All specifications are subject to change without notice.

Manual

Diamond Systems

DS-MPE-CAN2L

PCIe MiniCardI/O Expansion Module with Dual CANbus Ports

DS-MPE-CAN2L
PCIe MiniCard Dual CAN 2.0 Port Module

Rev A.1 April 2015

Revision Date Comment

A.0 4/25/2014 Initial release

A.1 4/09/2015 Updated Windows installation procedure

 Copyright 2015
 FOR TECHNICAL SUPPORT Diamond Systems Corporation
 PLEASE CONTACT: 555 Ellis Street
 Mountain View, CA 94043 USA
 support@diamondsystems.com Tel 1-650-810-2500
 Fax 1-650-810-2525
 www.diamondsystems.com

mailto:support@diamondsystems.com
http://www.diamondsystems.com/

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 2

CONTENTS

1. Important Safe Handling Information ...3
2. Introduction ...4

2.1 Description ...4
2.2 Features ...4
2.3 Operating System Support ..4
2.4 Mechanical, Electrical, Environmental ...4

3. Packing List ...4
4. Functional Overview ...5

4.1 Functional Block Diagram ..5
4.2 Mechanical Board Drawing ..6
4.3 CAN Controllers ...6
4.4 Transceivers ..7
4.5 Isolation ...7
4.6 Power Supply ...7

5. Installation ...7
6. Connector Pinout and Pin Description ...8

6.1 PCIe MiniCard Edge Connector (J1) ...8
6.2 CAN Ports (J4, J7) ...8

7. Jumper Configuration ..9
8. Linux Driver installation .. 10

8.1 Installing the Software .. 10
8.2 Setting the Baud Rate .. 11
8.3 Setting the CAN ID and Message Length .. 12
8.4 Writing a Message .. 13
8.5 Viewing Messages .. 14

9. Configure and Manage the Ports in Linux .. 16
9.1 API to Configure and Manage CAN Ports .. 16
9.2 Compiling User Application using CANLib Library ... 19

10. Driver installation and Demo Application for Windows... 20
10.1 Installing the PCI-CAN Driver ... 20
10.2 Run the Windows Application ... 24
10.3 Setting the Baud Rate .. 25
10.4 Setting the CAN ID and Message Length .. 26
10.5 Writing a Message .. 27
10.6 Viewing Messages .. 28

11. API to Configure and Manage CAN Ports on Windows ... 29
12. Specifications ... 33

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 3

1. IMPORTANT SAFE HANDLING INFORMATION

WARNING!

ESD-Sensitive Electronic Equipment

Observe ESD-safe handling procedures when working with this product.

Always use this product in a properly grounded work area and wear appropriate
ESD-preventive clothing and/or accessories.

Always store this product in ESD-protective packaging when not in use.

Safe Handling Precautions

This board contains a high density connector with many connections to sensitive electronic components. This
creates many opportunities for accidental damage during handling, installation and connection to other
equipment. The list here describes common causes of failure found on boards returned to Diamond Systems for
repair. This information is provided as a source of advice to help you prevent damaging your Diamond (or any
vendor’s) embedded computer boards.
ESD damage – This type of damage is usually almost impossible to detect, because there is no visual sign of
failure or damage. The symptom is that the board eventually simply stops working, because some component
becomes defective. Usually the failure can be identified and the chip can be replaced. To prevent ESD damage,
always follow proper ESD-prevention practices when handling computer boards.

Damage during handling or storage – On some boards we have noticed physical damage from mishandling. A
common observation is that a screwdriver slipped while installing the board, causing a gouge in the PCB surface
and cutting signal traces or damaging components.

Another common observation is damaged board corners, indicating the board was dropped. This may or may not
cause damage to the circuitry, depending on what is near the corner. Most of our boards are designed with at
least 25 mils clearance between the board edge and any component pad, and ground / power planes are at least
20 mils from the edge to avoid possible shorting from this type of damage. However these design rules are not
sufficient to prevent damage in all situations.

A third cause of failure is when a metal screwdriver tip slips, or a screw drops onto the board while it is powered
on, causing a short between a power pin and a signal pin on a component. This can cause overvoltage / power
supply problems described below. To avoid this type of failure, only perform assembly operations when the
system is powered off.

Sometimes boards are stored in racks with slots that grip the edge of the board. This is a common practice for
board manufacturers. However our boards are generally very dense, and if the board has components very close
to the board edge, they can be damaged or even knocked off the board when the board tilts back in the rack.
Diamond recommends that all our boards be stored only in individual ESD-safe packaging. If multiple boards are
stored together, they should be contained in bins with dividers between boards. Do not pile boards on top of each
other or cram too many boards into a small location. This can cause damage to connector pins or fragile
components.

Power supply wired backwards – Our power supplies and boards are not designed to withstand a reverse
power supply connection. This will destroy each IC that is connected to the power supply (i.e. almost all ICs). In
this case the board will most likely will be unrepairable and must be replaced. A chip destroyed by reverse power
or by excessive power will often have a visible hole on the top or show some deformation on the top surface due
to vaporization inside the package. Check twice before applying power!

Overvoltage on digital I/O line – If a digital I/O signal is connected to a voltage above the maximum specified
voltage, the digital circuitry can be damaged. On most of our boards the acceptable range of voltages connected
to digital I/O signals is 0-5V, and they can withstand about 0.5V beyond that (-0.5 to 5.5V) before being damaged.
However logic signals at 12V and even 24V are common, and if one of these is connected to a 5V logic chip, the
chip will be damaged, and the damage could even extend past that chip to others in the circuit

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 4

2. INTRODUCTION

2.1 Description

DS-MPE-CAN2L implements a CAN protocol bus controller that performs serial communications according to the
CAN 2.0A and CAN 2.0B specifications. The protocol uses a multi-master bus configuration for the transfer of
frames between nodes of the network and manages error handling with no burden on the host processor.

2.2 Features

 2 CAN 2.0B ports with a 1Mbps data rate and programmable interrupts

 31 receive buffers for improved performance

 1 high priority transmit buffer and 16 standard priority transmit buffers

 16 programmable acceptance filters

 11-bit and 29-bit identifiers

 500V port-to-port and input-to-output isolation

 Driver supports dual-independent and dual-redundant modes

 Latching connectors for increased ruggedness

2.3 Operating System Support

 Linux 2.6.16, 2.6.27, 2.6.31 and 2.6.32

 Windows 7

2.4 Mechanical, Electrical, Environmental

 PCIe MiniCard full size format

 Dimensions: 50.95mm x 30mm (2” x 1.18”)
 -40°C to +85°C ambient operating temperature

 Power input requirements: +3.3VDC +/- 5%

3. PACKING LIST

The DS-MPE-CAN2L product comes with the PCIe MiniCard hardware assembly,
a cable kit with two dual serial cables, and a hardware kit containing jumpers
and mounting screws.

Quantity Part Number Description

1 9150500 DS-MPE-CAN2L hardware assembly

1 6800500 Hardware Kit with jumpers and screws

1 CK-CAN2L Cable Kit with two CAN cables

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 5

4. FUNCTIONAL OVERVIEW

4.1 Functional Block Diagram

The DS-MPE-CAN2L block diagram is shown below.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 6

4.2 Mechanical Board Drawing

The DS-MPE-CAN2L conforms to the PCIe MiniCard electromechanical specification revision 1.2, full size format.
Overall dimensions are 50.95mm L x 30.00mm W.

The two mounting holes are isolated from the CPU ground and not connected to any ground lines.

4.3 CAN Controllers

The module offers two CAN controllers implemented as FPGA cores inside a Xilinx Spartan 6 FPGA. The core
provides the following key features:

 Conforms to the ISO 11898 -1, CAN 2.0A, and CAN 2.0B standards

 Supports both standard (11-bit identifier) and extended (29-bit identifier) frames

 Supports bit rates up to 1Mbps

 Transmit message FIFO with a user-configurable depth of up to 64 messages

 Transmit prioritization through one High-Priority Transmit buffer

 Automatic re-transmission on errors or arbitration loss

 Receive message FIFO with a user-configurable depth of up to 64 messages

 Acceptance filtering with a user-configurable number of up to 16 acceptance filters

 Sleep Mode with automatic wake-up

 Loop Back Mode for diagnostic applications

 Maskable Error and Status Interrupts

 Readable Error Counters

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 7

4.4 Transceivers

The transceivers are Analog Devices ADM3053 combination isolation and transceiver. It provides isolated +5V to
power the isolated side of the transceiver. This isolated +5V is available on the I/O connector.

4.5 Isolation

The module supports 500V isolation between each CAN port and the host, and between each CAN port and the
other, via the ADM3053 isolated transceiver. An optional high-voltage resistor can be installed across each
isolation barrier to enable leakage current flow between the isolated transceiver grounds and the host ground.

4.6 Power Supply

The module is powered by +3.3V from the PCIe MiniCard socket. It provides all other required voltages on board,
including +5V for the CAN transceivers and the FPGA core voltages.

5. INSTALLATION

The DS-MPE-CAN2L plugs in to any socket meeting the PCIe MiniCard specifications. It has two connectors,
one for each pair of serial ports, a protocol configuration jumper block, and a pair of mounting holes. To install the
DS-MPE-CAN2L, fully insert the board into a PCIe MiniCard connector and secure in place by inserting one screw
from the hardware kit into each of the mounting holes, see the diagram below.

J1 PCIe MiniCard edge finger connector

Mounting holes

J3 termination jumper block

J7 CAN connector

J6 termination jumper block

J4 CAN connector

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 8

6. CONNECTOR PINOUT AND PIN DESCRIPTION

6.1 PCIe MiniCard Edge Connector (J1)

The DS-MPE-CAN2L module is compatible with the standard Mini PCIe socket pinout as shown below.

WAKE# 1 2 +3.3VAUX_3

COEX1 3 4 GND9

COEX2 5 6 +1.5V_1

CLKREQ# 7 8 UIM_PWR

GND1 9 10 UIM_DATA

REFCLK- 11 12 UIM_CLK

REFCLK+ 13 14 UIM_RESET

GND2 15 16 UIM_VPP

 KEY

RSVD(UIM_C8) 17 18 GND10

RSVD(UIM_C4) 19 20 W_DISABLE#

GND3 21 22 PERST#

PERN0 23 24 +3.3VAUX_4

PERP0 25 26 GND11

GND4 27 28 +1.5V_2

GND5 29 30 SMB_CLK

PETN0 31 32 SMB_DATA

PETP0 33 34 GND12

GND6 35 36 USB_D-

GND7 37 38 USB_D+

+3.3VAUX_1 39 40 GND13

+3.3VAUX_2 41 42 LED_WWAN#

GND8 43 44 LED_WLAN#

RSVD1 45 46 LED_WPAN#

RSVD2 47 48 +1.5V_3

RSVD3 49 50 GND14

RSVD4 51 52 +3.3VAUX_5

6.2 CAN Ports (J4, J7)

Each of the two CAN ports has its own 4-pin latching connector with the following pin out.

1 Ground Iso

2 CAN L

3 CAN H

4 Ground Iso

Connector Part Number / Description

BM04B-GHS-TBT 4 pos, 1.25mm, vertical, latching, SMD

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 9

7. JUMPER CONFIGURATION

The DS-MPE-CAN2L module has two line termination jumper blocks, one for each port. Jumper block J3 is for
port J4, and jumper block J6 is for port J7. Jumper blocks J3 and J6 are identical. The default is no jumpers
installed. To add termination for a port’s bias line (jumper position B), CAN-H line (jumper position H), or CAN-L
line (jumper position L), add a jumper at B, H or L location respectively.

B H L

O O O

O O O

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 10

8. LINUX DRIVER INSTALLATION

8.1 Installing the Software

The following steps are used to install the CAN interface utility software under the Linux operating system.

Step-1:

Download the DSC_CAN2L_PCI_LINUX_V1.7.zip file from the DS-MPE-CAN2L webpage
(http://www.diamondsystems.com/products/dsmpecan2l). Click on Linux driver package v1.0.7 in the Downloads
section of the webpage. Use the following command to unzip the files:

Unzip DSC_CAN2L_PCI_LINUX_V1.7.zip

A DSC_CAN2L_PCI_LINUX_V1.7 directory will be created where the zip file is extracted. The
DSC_CAN2L_PCI_LINUX_V1.7 directory contains the following files.

ls –l
1. CAN_Monitor : CAN Monitor demo application directory
2. CANLib : CAN Linux shared library.
3. dsc_can2_pci_driver: Linux CAN driver.
4. qt-opensource-linux-x86-5.2.1.run : Qt Installer which is required by the PCI CAN Interface utility.

Step-2:

Install the Qt shared libraries using the Qt Installer. Execute the command below and follow the Qt Installer
instructions. Use the command below to install the Qt shared libraries. Install Qt at the default locations.

cd DSC_CAN2L_PCI_LINUX_V1.7

./qt-opensource-linux-x86-5.2.1.run

Note: The Qt shared libraries should be installed only once.

Step-3:

PCI CAN Utility is based on the CANLib library. Copy the shared library to “/lib” directory.

 cd CANLib

 cp libCAN.so /lib

Please note : Step-3 should be done only once.

Step-4:

Load the PCI CAN interface driver using the command below from the dsc_can2_pci_driver directory where the
zip file is extracted.

cd dsc_can2_pci_driver

insmod dsc_can2_pci.ko

Step-5:

Start the PCI CAN Utility using the command below from the CAN_Monitor directory where the zip file is
extracted.

cd CAN_monitor

./CAN

http://www.diamondsystems.com/products/dsmpecan2l

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 11

This command will open the CAN interface utility. To start the CAN utility in the future, follow Steps 4 and 5 only.

8.2 Setting the Baud Rate

Using the CAN interface utility software, the baud rate for each port can be selected. On the desired CAN port,
select the baud rate from the Baud Rate drop-down menu. After selecting the desired baud rate, press “Connect”
to connect with specified baud rate as shown in below figure.

To change the baud rate, click on “Disconnect” and select a new baud rate.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 12

8.3 Setting the CAN ID and Message Length

Set the CAN ID and CAN message length for each CAN port by entering the desired numbers into the ID and Len
fields respectively for that port.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 13

8.4 Writing a Message

To write a message on a CAN port, define the CAN message by entering the desired data into the Data (Hex)
fields. Then click on “Write Message” as shown in the below figure.

To transmit to a different CAN ID, change the data in the CAN ID field, enter the desired data into the Data (Hex)
fields, and click on “Write Message”.

To change the message length, change the CAN message length to the new length, enter the desired data into
the Data (Hex) fields, and click on “Write Message”.

To transmit a different CAN message to the same CAN ID, change the CAN message to the desired data, and
click on “Write Message”.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 14

8.5 Viewing Messages

Transmitted messages are listed in the CAN message box for the sending CAN port as shown in below figure.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 15

Received CAN messages are listed in the CAN message box for the CAN port receiving the message as shown
in below figure.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 16

9. CONFIGURE AND MANAGE THE PORTS IN LINUX

The CANLib library provides the set of APIs to configure and manage the CAN ports. The CANLib library can be
used to build the CAN user application. It is a shared library built on top of Linux platform and using the driver
provided functionality. To compile the CANLib shared library, use the below command

cd CANLib

make

All the CAN APIs prototypes are defined in the can.h file. This file is located in the CANLib directory. Include the
can.h file in the user application to use all these APIs.

9.1 API to Configure and Manage CAN Ports

init_can0() & init_can1() : These function will initialize the CAN#0 & CAN#1 ports respectively.

Both these functions return the CAN file descriptor (fd). The return value of these functions should be retained
for all subsequent APIs. Its prototypes are defined in the can.h file. Declare two CAN file descriptors and
retains its return values.

#include “can.h”
…
int can0_fd;

int can1_fd;

…
can0_fd = init_can0() ;

if (can0_fd < 0)

{

printf("Error while initializing the CAN#0\n") ;

exit(0) ;

}

…
can1_fd = init_can1() ;

if (can1_fd < 0)

{

printf("Error while initializing the CAN#1\n") ;

 exit(0) ;

}

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 17

Baud Rate Configuration

set_baudrate() : This function configures the baud rate for the specified CAN port. By default it will not
configure any baud rate. Below code snippet describes the usage of setting baud rate to 500kbps.

// Set 500k Baud rate for CAN#0

ret_val = set_baudrate(can0_fd, CAN_SPEED_500K) ;

if (ret_val < 0)

{

printf("Error while setting the baud rate \n") ;

exit(0) ;

}

// Set 500k Baud rate for CAN#1

ret_val = set_baudrate(can1_fd, CAN_SPEED_500K) ;

if (ret_val < 0)

{

printf("Error while setting the baud rate \n") ;

 exit(0) ;

}

In the above code, can0_fd and can1_fd should contain the values returned by
init_can0 and init_can1 function.

Use below macros for setting the different baud rates. These macros can also be
found in can.h file.

CAN_SPEED_1M

CAN_SPEED_800K

CAN_SPEED_500K

CAN_SPEED_250K

CAN_SPEED_125K

CAN_SPEED_100K

CAN_SPEED_50K

CAN_SPEED_20K

CAN_SPEED_10K

CAN Transmit & Receive

can_tx() & can_rx() : These functions are be used to Transmit and Receive the CAN messages respectively.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 18

CAN Transmit Prototype

int can_tx(int can_fd, unsigned char msgType, unsigned int can_id, int
len,unsigned char *data) ;

Assign the appropriate values, before calling the can_tx function.

can0_fd: CAN descriptor, return value from init_can0() function

msgType = MSG_STANDARD ; // or MSG_EXTENDED.

can_id = 0x12;

//if the msgType is MSG_STANDARD then can_id value should be in the range of 0x0 to
0x7FF (11 bit value)

//Else if the msgType is MSG_EXTENDED then can_id value should be in the range 0x0
to 0x1FFFFFFF (29 bit value)

len = 4 //This field can be of 0 to 8 ; // CAN Transmit Data Length (DLC)

data: This field depends on the above CAN Data length len field.

In this case, len is 4 then the CAN message data will be of 4 bytes long and each
byte can have values from 0x0 to 0xFF (8-bits)

data[0] = 0x1A ;

data[1] = 0xAB ;

data[2] = 0x22 ;

data[3] = 0x4D ;

ret_val = can_tx(can0_fd, msgType, can_id, dlc, data) ;

if (ret_val < 0)

{

printf("Error while transmitting the CAN message.\n") ;

close(can1_fd) ;

exit(0) ;

}

The above sample code will transmit the CAN standard message with CAN ID=0x12 of data length=4 and
message data = {0x1A, 0xAB, 0x22, 0x4D};

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 19

CAN Receive Prototype

int can_rx(int can_fd, unsigned char *msgType, unsigned char *rx_data, unsigned int
*can_id, unsigned char *can_msg_len) ;

Pass the appropriate pointers for calling the can_rx function:

if (can_rx(can0_fd, &msgType, data, &can_id, &dlc))

{

 If (msgType == MSG_STANDARD)

 {

 // Received message is CAN Standard Message.

}

else if (msgType == MSG_EXTENDED)

{

 // Received message is CAN Extended Message.

}

// dlc : Received CAN Data Length

// can_id : Will contain the CAN Message ID

// Data of dlc length

printf("ID=%x DLC=%d Data : ", can_id, dlc) ;

for (i=0; i< dlc; i++)

printf("%x ", data[i]) ;

printf("\n") ;

}

The sample example programs for both transmit and receive can be found in the CANLib directory for the
reference.

9.2 Compiling User Application using CANLib Library

Export the library path using the following command:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path-to-CANLib

To compile the user application, use the following command:

g++ can_app.c -lCAN –L/path-to-CANLib -o can_app

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 20

10. DRIVER INSTALLATION AND DEMO APPLICATION FOR WINDOWS

Download the DSC_CAN2_PCI_WIN_V1.0.3.zip file from the DS-MPE-CAN2L webpage
(http://www.diamondsystems.com/products/dsmpecan2l). Click on Windows driver package v1.0.3 in the
Downloads section of the webpage. Use the following command to unzip the files:

Unzip DSC_CAN2L_PCI_WIN_V1.0.3.zip

The “DSC_CAN2_PCI_WIN_V1.0.3” directory contains the CAN application, library, and driver for testing the 2-
CAN interfaces.

1. App : CAN Monitor demo application directory

2. dsc_can2_pci_src: Demo application source code directory.

3. dsc_can2_pci_driver: Windows CAN driver

10.1 Installing the PCI-CAN Driver

Step-1:
Open Windows command prompt with Administrator privileges.
Click on Windows start button and type cmd in the search box and right click on the cmd.exe and click on “Run as
administrator”. Please refer to the screenshot given below.

http://www.diamondsystems.com/products/dsmpecan2l

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 21

Step-2:
Change the working directory from the command prompt to the “DSC_CAN2_PCI_WIN_V1.0.3\
dsc_can2_pci_driver” directory where the software is copied.

Step-3:
Execute “install.bat”. Please see the below screenshot for details. After executing, follow the next steps to install
the driver.

Step-4:
Restart the system.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 22

Step-5:
Check whether the driver is installed properly or not by opening the device manager.

Right Click on My Computer => Click on Properties => Device Manager. Please refer to the screenshot below.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 23

If the driver is installed properly then the device manager will show the device as “PCIe Sample device” under
“Sample Device” as shown in the screenshot below.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 24

10.2 Run the Windows Application

The application is stored in the “App” directory. Double click on “dsc_can2_pci.exe”. The application window will
open as shown in the below screenshot.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 25

10.3 Setting the Baud Rate

Using the CAN interface utility software, the baud rate for each port can be selected. On the desired CAN port,
select the baud rate from the Baud Rate drop-down menu. After selecting the desired baud rate, press “Connect”
to connect with specified baud rate as shown in below figure.

To change the baud rate, click on “Disconnect” and select a new baud rate.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 26

10.4 Setting the CAN ID and Message Length

Set the CAN ID and CAN message length for each CAN port by entering the desired numbers into the ID and Len
fields respectively for that port.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 27

10.5 Writing a Message

To write a message on a CAN port, define the CAN message by entering the desired data into the Data (Hex)
fields. Then click on “Write Message” as shown in the below figure.

To transmit a different CAN ID, change data in the CAN ID field, enter the desired data into the Data (Hex) fields,
and click on “Write Message”.

To change the message length, change the CAN message length to the new length, enter the desired data into
the Data (Hex) fields, and click on “Write Message”.

To transmit a different CAN message to the same CAN ID, change the CAN message to the desired data, and
click on “Write Message”.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 28

10.6 Viewing Messages

Transmitted and received messages are listed in the CAN message box for the sending CAN port as shown in
below figure.

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 29

11. API TO CONFIGURE AND MANAGE CAN PORTS ON WINDOWS

The source code for all windows user APIs to configure and manage the CAN ports are stored in
“dsc_can2_pci_src“ directory. User can include following files into their project directory. These API are
dependent on CAN dll. User has to include these dll into their project directory.

common.h

dscud.h

dscud_os.h

mpedaq0804.h

pci_fpga.h

public.h

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 30

The APIs are dependent on lib and dll. User has include the below APIs into their project.

dscud.dll

dscud.lib

Project Settings -> Configuration Properties -> Linker -> Input ->

Modify Additional Dependecies : dscud.lib;setupapi.lib;%(AdditionalDependencies)

Opening the CAN device

OpenDevice(&GUID_DEVINTERFACE_FP_GPIO96, FILE_FLAG_OVERLAPPED);

This function should be called only once during initiation. It returns a valid handle if the driver detects the CAN
device.

can_init(int can_ch): This API accepts the CAN interface number as an argument for the initialization. This will
initialize CAN#0 or CAN#1. The value of can_ch should 0 for CAN#0 and 1 for CAN#1.

// Example : To initialize CAN#0 channel, pass the argument value as 0 to can_init function as shown below.

…

can_init (0) ; // Will initialize CAN#0 channel

Similarly, CAN#1 can be initialized by passing ‘1’ as argument to can_init function as shown below

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 31

can_init (1); // Will initialize CAN#1 channel

Baud rate configuration.

set_baudrate(int can_ch, int baud rate): This API accepts the CAN interface number and the baudrate as
arguments for configuring the baud rate of the specified CAN port.

// Set 500k Baud rate for CAN#0, Corresponding CAN channel values should be passed.

ret_val = set_baudrate(0, CAN_SPEED_500K) ;

Use below macros for setting the different baud rates. These macros can also be found in can.h file.

CAN_SPEED_1M

CAN_SPEED_800K

CAN_SPEED_500K

CAN_SPEED_250K

CAN_SPEED_125K

CAN_SPEED_100K

CAN_SPEED_50K

CAN_SPEED_20K

CAN_SPEED_10K

CAN Transmit & Receive :

FrameCANTxMsg() & check_rx_msg() : These function will be used to Transmit and Receive the CAN
messages respectively.

CAN Transmit Prototype.

void FrameCANTxMsg(int can_ch, unsigned char msgType, unsigned int can_id, int len, unsigned char *data):

Assign the appropriate values, before calling the FrameCANTxMsg function.

can_ch: CAN port number, 0 for CAN#0 and 1 for CAN#1.

msgType = MSG_STANDARD ; // or MSG_EXTENDED .

can_id = 0x12; //if the msgType is MSG_STANDARD then the value should be in the range of 0x0 to 0x7FF (11
bit value)

//Else if the msgType is MSG_EXTENDED then the value should be in range 0x0 to 0x1FFFFFFF (29 bit value)

len = 4 //This field can be of 0 to 8 bytes length ; // CAN Transmit Data Length

data: This field depends on the len field.

If len is 4 then the CAN message data will be of 4 bytes long and each byte can range from 0x0 to 0xFF (
8-Bit data)

data[0] = 0x1A ;

data[1] = 0xAB ;

data[2] = 0x22 ;

data[3] = 0x4D ;

FrameCANTxMsg(0, msgType, can_id, dlc, data) ;

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 32

The above sample code will transmit the CAN Standard message with CAN ID=0x12 of data length=4 and
message data = {0x1A, 0xAB, 0x22, 0x4D} ;

CAN Receive Prototype.

int check_rx_msg(int can_ch, unsigned char *msgType, unsigned char *rx_data, unsigned int *can_id, unsigned
char *can_msg_len);

Pass the appropriate pointers for calling the check_rx_msg function.

if (check_rx_msg(0, &msgType, data, &can_id, &dlc))

{

 If (msgType == MSG_STANDARD)

 {

 // Received message is CAN Standard Message.

}

else if (msgType == MSG_EXTENDED)

{

 // Received message is CAN Extended Message.

}

// dlc : Received CAN Data Length

// can_id : Will contain the received CAN Message ID

// Data of dlc length

printf("ID=%x DLC=%d Data : ", can_id, dlc) ;

for (i=0; i< dlc; i++)

printf("%x ", data[i]) ;

printf("\n") ;

}

The sample example programs for both transmit and receive can be found in the
DSC_CAN2_PCI_V1.0.2_2015_01_13 directory for the reference.

Compile and build the CAN Application using VC++

DS-MPE-CAN2L User Manual Rev A.1 www.diamondsystems.com Page 33

12. SPECIFICATIONS

Number of ports 2 CAN 2.0B

Data rate 1Mbps

Number of receive buffers 31

Number of transmit buffers
1 high priority

16 standard priority

Acceptance filters 16 programmable, 29-bit

Identifiers 11-bit and 29-bit

Modes Dual-independent

Dual-redundant

Isolation 500V port-to-port and input-to-output

Input power +3.3VDC +/-5%

Power consumption 0.462W @ 3.3V

Software drivers Windows XP

Linux 2.6.16, 2.6.27, 2.6.31, and 2.6.32

Operating temperature -40°C to +85°C

MTBF 1,583,210 hours at 20
o
C

Dimensions 50.95mm x 30mm (2” x 1.18”)
Weight 8.5g (0.3oz)

RoHS Compliant Yes

Our company network supports you worldwide with offices in Germany, Austria, Switzerland, the UK and the

USA. For more information please contact:

Headquarters

Germany

FORTEC Elektronik AG

Augsburger Str. 2b

82110 Germering

Phone: +49 89 894450-0

E-Mail: info@fortecag.de

Internet: www.fortecag.de

Fortec Group Members

Austria

Distec GmbH Office Vienna

Nuschinggasse 12

1230 Wien

Phone: +43 1 8673492-0

E-Mail: info@distec.de

Internet: www.distec.de

Germany

Distec GmbH

Augsburger Str. 2b

82110 Germering

Phone: +49 89 894363-0

E-Mail: info@distec.de

Internet: www.distec.de

Switzerland

ALTRAC AG

Bahnhofstraße 3

5436 Würenlos

Phone: +41 44 7446111

E-Mail: info@altrac.ch

Internet: www.altrac.ch

United Kingdom

Display Technology Ltd.

Osprey House, 1 Osprey Court

Hichingbrooke Business Park

Huntingdon, Cambridgeshire, PE29 6FN

Phone: +44 1480 411600

E-Mail: info@displaytechnology.co.uk

Internet: www. displaytechnology.co.uk

USA

Apollo Display Technologies, Corp.

87 Raynor Avenue,

Unit 1Ronkonkoma,

NY 11779

Phone: +1 631 5804360

E-Mail: info@apollodisplays.com

Internet: www.apollodisplays.com

mailto:sales@fortecag.de
http://www.fortecag.de/
mailto:west@fortecag.de
http://www.fortecag.de/
mailto:office@fortec.at
http://www.fortec.at/
mailto:info@altrac.ch
http://www.altrac.ch/

